Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fununiq Structured version   Visualization version   Unicode version

Theorem fununiq 31667
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
fununiq.1  |-  A  e. 
_V
fununiq.2  |-  B  e. 
_V
fununiq.3  |-  C  e. 
_V
Assertion
Ref Expression
fununiq  |-  ( Fun 
F  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )

Proof of Theorem fununiq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5898 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
2 fununiq.1 . . . 4  |-  A  e. 
_V
3 fununiq.2 . . . 4  |-  B  e. 
_V
4 fununiq.3 . . . 4  |-  C  e. 
_V
5 breq12 4658 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x F y  <-> 
A F B ) )
653adant3 1081 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x F y  <-> 
A F B ) )
7 breq12 4658 . . . . . . . 8  |-  ( ( x  =  A  /\  z  =  C )  ->  ( x F z  <-> 
A F C ) )
873adant2 1080 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x F z  <-> 
A F C ) )
96, 8anbi12d 747 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x F y  /\  x F z )  <->  ( A F B  /\  A F C ) ) )
10 eqeq12 2635 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  C )  ->  ( y  =  z  <-> 
B  =  C ) )
11103adant1 1079 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( y  =  z  <-> 
B  =  C ) )
129, 11imbi12d 334 . . . . 5  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  <-> 
( ( A F B  /\  A F C )  ->  B  =  C ) ) )
1312spc3gv 3298 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) ) )
142, 3, 4, 13mp3an 1424 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  -> 
( ( A F B  /\  A F C )  ->  B  =  C ) )
1514adantl 482 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )
161, 15sylbi 207 1  |-  ( Fun 
F  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  funbreq  31668
  Copyright terms: Public domain W3C validator