| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fv3 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 6189 |
. . 3
| |
| 2 | biimpr 210 |
. . . . . . . . . 10
| |
| 3 | 2 | alimi 1739 |
. . . . . . . . 9
|
| 4 | vex 3203 |
. . . . . . . . . 10
| |
| 5 | breq2 4657 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ceqsalv 3233 |
. . . . . . . . 9
|
| 7 | 3, 6 | sylib 208 |
. . . . . . . 8
|
| 8 | 7 | anim2i 593 |
. . . . . . 7
|
| 9 | 8 | eximi 1762 |
. . . . . 6
|
| 10 | elequ2 2004 |
. . . . . . . 8
| |
| 11 | breq2 4657 |
. . . . . . . 8
| |
| 12 | 10, 11 | anbi12d 747 |
. . . . . . 7
|
| 13 | 12 | cbvexv 2275 |
. . . . . 6
|
| 14 | 9, 13 | sylib 208 |
. . . . 5
|
| 15 | exsimpr 1796 |
. . . . . 6
| |
| 16 | df-eu 2474 |
. . . . . 6
| |
| 17 | 15, 16 | sylibr 224 |
. . . . 5
|
| 18 | 14, 17 | jca 554 |
. . . 4
|
| 19 | nfeu1 2480 |
. . . . . . 7
| |
| 20 | nfv 1843 |
. . . . . . . . 9
| |
| 21 | nfa1 2028 |
. . . . . . . . 9
| |
| 22 | 20, 21 | nfan 1828 |
. . . . . . . 8
|
| 23 | 22 | nfex 2154 |
. . . . . . 7
|
| 24 | 19, 23 | nfim 1825 |
. . . . . 6
|
| 25 | biimp 205 |
. . . . . . . . . . . . . 14
| |
| 26 | ax9 2003 |
. . . . . . . . . . . . . 14
| |
| 27 | 25, 26 | syl6 35 |
. . . . . . . . . . . . 13
|
| 28 | 27 | com23 86 |
. . . . . . . . . . . 12
|
| 29 | 28 | impd 447 |
. . . . . . . . . . 11
|
| 30 | 29 | sps 2055 |
. . . . . . . . . 10
|
| 31 | 30 | anc2ri 581 |
. . . . . . . . 9
|
| 32 | 31 | com12 32 |
. . . . . . . 8
|
| 33 | 32 | eximdv 1846 |
. . . . . . 7
|
| 34 | 16, 33 | syl5bi 232 |
. . . . . 6
|
| 35 | 24, 34 | exlimi 2086 |
. . . . 5
|
| 36 | 35 | imp 445 |
. . . 4
|
| 37 | 18, 36 | impbii 199 |
. . 3
|
| 38 | 1, 37 | bitri 264 |
. 2
|
| 39 | 38 | abbi2i 2738 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |