MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv3 Structured version   Visualization version   Unicode version

Theorem fv3 6206
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Distinct variable groups:    x, y, F    x, A, y

Proof of Theorem fv3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elfv 6189 . . 3  |-  ( x  e.  ( F `  A )  <->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
2 biimpr 210 . . . . . . . . . 10  |-  ( ( A F y  <->  y  =  z )  ->  (
y  =  z  ->  A F y ) )
32alimi 1739 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  A. y
( y  =  z  ->  A F y ) )
4 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
5 breq2 4657 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A F y  <->  A F
z ) )
64, 5ceqsalv 3233 . . . . . . . . 9  |-  ( A. y ( y  =  z  ->  A F
y )  <->  A F
z )
73, 6sylib 208 . . . . . . . 8  |-  ( A. y ( A F y  <->  y  =  z )  ->  A F
z )
87anim2i 593 . . . . . . 7  |-  ( ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )  ->  (
x  e.  z  /\  A F z ) )
98eximi 1762 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z
( x  e.  z  /\  A F z ) )
10 elequ2 2004 . . . . . . . 8  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
11 breq2 4657 . . . . . . . 8  |-  ( z  =  y  ->  ( A F z  <->  A F
y ) )
1210, 11anbi12d 747 . . . . . . 7  |-  ( z  =  y  ->  (
( x  e.  z  /\  A F z )  <->  ( x  e.  y  /\  A F y ) ) )
1312cbvexv 2275 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A F z )  <->  E. y
( x  e.  y  /\  A F y ) )
149, 13sylib 208 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. y
( x  e.  y  /\  A F y ) )
15 exsimpr 1796 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z A. y ( A F y  <->  y  =  z ) )
16 df-eu 2474 . . . . . 6  |-  ( E! y  A F y  <->  E. z A. y ( A F y  <->  y  =  z ) )
1715, 16sylibr 224 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E! y  A F y )
1814, 17jca 554 . . . 4  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
19 nfeu1 2480 . . . . . . 7  |-  F/ y E! y  A F y
20 nfv 1843 . . . . . . . . 9  |-  F/ y  x  e.  z
21 nfa1 2028 . . . . . . . . 9  |-  F/ y A. y ( A F y  <->  y  =  z )
2220, 21nfan 1828 . . . . . . . 8  |-  F/ y ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2322nfex 2154 . . . . . . 7  |-  F/ y E. z ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2419, 23nfim 1825 . . . . . 6  |-  F/ y ( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
25 biimp 205 . . . . . . . . . . . . . 14  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  y  =  z ) )
26 ax9 2003 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  e.  y  ->  x  e.  z )
)
2725, 26syl6 35 . . . . . . . . . . . . 13  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  (
x  e.  y  ->  x  e.  z )
) )
2827com23 86 . . . . . . . . . . . 12  |-  ( ( A F y  <->  y  =  z )  ->  (
x  e.  y  -> 
( A F y  ->  x  e.  z ) ) )
2928impd 447 . . . . . . . . . . 11  |-  ( ( A F y  <->  y  =  z )  ->  (
( x  e.  y  /\  A F y )  ->  x  e.  z ) )
3029sps 2055 . . . . . . . . . 10  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  ->  x  e.  z )
)
3130anc2ri 581 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  -> 
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3231com12 32 . . . . . . . 8  |-  ( ( x  e.  y  /\  A F y )  -> 
( A. y ( A F y  <->  y  =  z )  ->  (
x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3332eximdv 1846 . . . . . . 7  |-  ( ( x  e.  y  /\  A F y )  -> 
( E. z A. y ( A F y  <->  y  =  z )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3416, 33syl5bi 232 . . . . . 6  |-  ( ( x  e.  y  /\  A F y )  -> 
( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3524, 34exlimi 2086 . . . . 5  |-  ( E. y ( x  e.  y  /\  A F y )  ->  ( E! y  A F
y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3635imp 445 . . . 4  |-  ( ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
3718, 36impbii 199 . . 3  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  <->  ( E. y
( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
381, 37bitri 264 . 2  |-  ( x  e.  ( F `  A )  <->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
3938abbi2i 2738 1  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   {cab 2608   class class class wbr 4653   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator