| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvopab5 | Structured version Visualization version Unicode version | ||
| Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvopab5.1 |
|
| fvopab5.2 |
|
| Ref | Expression |
|---|---|
| fvopab5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | df-fv 5896 |
. . . 4
| |
| 3 | breq2 4657 |
. . . . 5
| |
| 4 | nfcv 2764 |
. . . . . 6
| |
| 5 | fvopab5.1 |
. . . . . . 7
| |
| 6 | nfopab2 4720 |
. . . . . . 7
| |
| 7 | 5, 6 | nfcxfr 2762 |
. . . . . 6
|
| 8 | nfcv 2764 |
. . . . . 6
| |
| 9 | 4, 7, 8 | nfbr 4699 |
. . . . 5
|
| 10 | nfv 1843 |
. . . . 5
| |
| 11 | 3, 9, 10 | cbviota 5856 |
. . . 4
|
| 12 | 2, 11 | eqtri 2644 |
. . 3
|
| 13 | nfcv 2764 |
. . . . . . 7
| |
| 14 | nfopab1 4719 |
. . . . . . . 8
| |
| 15 | 5, 14 | nfcxfr 2762 |
. . . . . . 7
|
| 16 | nfcv 2764 |
. . . . . . 7
| |
| 17 | 13, 15, 16 | nfbr 4699 |
. . . . . 6
|
| 18 | nfv 1843 |
. . . . . 6
| |
| 19 | 17, 18 | nfbi 1833 |
. . . . 5
|
| 20 | breq1 4656 |
. . . . . 6
| |
| 21 | fvopab5.2 |
. . . . . 6
| |
| 22 | 20, 21 | bibi12d 335 |
. . . . 5
|
| 23 | df-br 4654 |
. . . . . 6
| |
| 24 | 5 | eleq2i 2693 |
. . . . . 6
|
| 25 | opabid 4982 |
. . . . . 6
| |
| 26 | 23, 24, 25 | 3bitri 286 |
. . . . 5
|
| 27 | 19, 22, 26 | vtoclg1f 3265 |
. . . 4
|
| 28 | 27 | iotabidv 5872 |
. . 3
|
| 29 | 12, 28 | syl5eq 2668 |
. 2
|
| 30 | 1, 29 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: ajval 27717 adjval 28749 |
| Copyright terms: Public domain | W3C validator |