| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grothpw | Structured version Visualization version Unicode version | ||
| Description: Derive the Axiom of Power Sets ax-pow 4843 from the Tarski-Grothendieck axiom ax-groth 9645. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html. Note that ax-pow 4843 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grothpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . . 8
| |
| 2 | 1 | ralimi 2952 |
. . . . . . 7
|
| 3 | pweq 4161 |
. . . . . . . . 9
| |
| 4 | 3 | sseq1d 3632 |
. . . . . . . 8
|
| 5 | 4 | rspccv 3306 |
. . . . . . 7
|
| 6 | 2, 5 | syl 17 |
. . . . . 6
|
| 7 | 6 | anim2i 593 |
. . . . 5
|
| 8 | 7 | 3adant3 1081 |
. . . 4
|
| 9 | pm3.35 611 |
. . . 4
| |
| 10 | vex 3203 |
. . . . 5
| |
| 11 | 10 | ssex 4802 |
. . . 4
|
| 12 | 8, 9, 11 | 3syl 18 |
. . 3
|
| 13 | axgroth5 9646 |
. . 3
| |
| 14 | 12, 13 | exlimiiv 1859 |
. 2
|
| 15 | pwidg 4173 |
. . . . 5
| |
| 16 | pweq 4161 |
. . . . . . 7
| |
| 17 | 16 | eleq2d 2687 |
. . . . . 6
|
| 18 | 17 | spcegv 3294 |
. . . . 5
|
| 19 | 15, 18 | mpd 15 |
. . . 4
|
| 20 | elex 3212 |
. . . . 5
| |
| 21 | 20 | exlimiv 1858 |
. . . 4
|
| 22 | 19, 21 | impbii 199 |
. . 3
|
| 23 | 10 | elpw2 4828 |
. . . . 5
|
| 24 | pwss 4175 |
. . . . . 6
| |
| 25 | dfss2 3591 |
. . . . . . . 8
| |
| 26 | 25 | imbi1i 339 |
. . . . . . 7
|
| 27 | 26 | albii 1747 |
. . . . . 6
|
| 28 | 24, 27 | bitri 264 |
. . . . 5
|
| 29 | 23, 28 | bitri 264 |
. . . 4
|
| 30 | 29 | exbii 1774 |
. . 3
|
| 31 | 22, 30 | bitri 264 |
. 2
|
| 32 | 14, 31 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-groth 9645 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |