MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpw Structured version   Visualization version   Unicode version

Theorem grothpw 9648
Description: Derive the Axiom of Power Sets ax-pow 4843 from the Tarski-Grothendieck axiom ax-groth 9645. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html. Note that ax-pow 4843 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpw  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, y, z, w

Proof of Theorem grothpw
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  ->  ~P z  C_  y )
21ralimi 2952 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  A. z  e.  y  ~P z  C_  y
)
3 pweq 4161 . . . . . . . . 9  |-  ( z  =  x  ->  ~P z  =  ~P x
)
43sseq1d 3632 . . . . . . . 8  |-  ( z  =  x  ->  ( ~P z  C_  y  <->  ~P x  C_  y ) )
54rspccv 3306 . . . . . . 7  |-  ( A. z  e.  y  ~P z  C_  y  ->  (
x  e.  y  ->  ~P x  C_  y ) )
62, 5syl 17 . . . . . 6  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  ( x  e.  y  ->  ~P x  C_  y ) )
76anim2i 593 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
) )  ->  (
x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) ) )
873adant3 1081 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  -> 
( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y ) ) )
9 pm3.35 611 . . . 4  |-  ( ( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) )  ->  ~P x  C_  y )
10 vex 3203 . . . . 5  |-  y  e. 
_V
1110ssex 4802 . . . 4  |-  ( ~P x  C_  y  ->  ~P x  e.  _V )
128, 9, 113syl 18 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  ->  ~P x  e.  _V )
13 axgroth5 9646 . . 3  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
1412, 13exlimiiv 1859 . 2  |-  ~P x  e.  _V
15 pwidg 4173 . . . . 5  |-  ( ~P x  e.  _V  ->  ~P x  e.  ~P ~P x )
16 pweq 4161 . . . . . . 7  |-  ( y  =  ~P x  ->  ~P y  =  ~P ~P x )
1716eleq2d 2687 . . . . . 6  |-  ( y  =  ~P x  -> 
( ~P x  e. 
~P y  <->  ~P x  e.  ~P ~P x ) )
1817spcegv 3294 . . . . 5  |-  ( ~P x  e.  _V  ->  ( ~P x  e.  ~P ~P x  ->  E. y ~P x  e.  ~P y ) )
1915, 18mpd 15 . . . 4  |-  ( ~P x  e.  _V  ->  E. y ~P x  e. 
~P y )
20 elex 3212 . . . . 5  |-  ( ~P x  e.  ~P y  ->  ~P x  e.  _V )
2120exlimiv 1858 . . . 4  |-  ( E. y ~P x  e. 
~P y  ->  ~P x  e.  _V )
2219, 21impbii 199 . . 3  |-  ( ~P x  e.  _V  <->  E. y ~P x  e.  ~P y )
2310elpw2 4828 . . . . 5  |-  ( ~P x  e.  ~P y  <->  ~P x  C_  y )
24 pwss 4175 . . . . . 6  |-  ( ~P x  C_  y  <->  A. z
( z  C_  x  ->  z  e.  y ) )
25 dfss2 3591 . . . . . . . 8  |-  ( z 
C_  x  <->  A. w
( w  e.  z  ->  w  e.  x
) )
2625imbi1i 339 . . . . . . 7  |-  ( ( z  C_  x  ->  z  e.  y )  <->  ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
2726albii 1747 . . . . . 6  |-  ( A. z ( z  C_  x  ->  z  e.  y )  <->  A. z ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
2824, 27bitri 264 . . . . 5  |-  ( ~P x  C_  y  <->  A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
2923, 28bitri 264 . . . 4  |-  ( ~P x  e.  ~P y  <->  A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3029exbii 1774 . . 3  |-  ( E. y ~P x  e. 
~P y  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3122, 30bitri 264 . 2  |-  ( ~P x  e.  _V  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3214, 31mpbi 220 1  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator