MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruss Structured version   Visualization version   Unicode version

Theorem gruss 9618
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruss  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  B  C_  A )  ->  B  e.  U )

Proof of Theorem gruss
StepHypRef Expression
1 elpw2g 4827 . . . 4  |-  ( A  e.  U  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
21adantl 482 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  U )  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
3 grupw 9617 . . . . 5  |-  ( ( U  e.  Univ  /\  A  e.  U )  ->  ~P A  e.  U )
4 gruelss 9616 . . . . 5  |-  ( ( U  e.  Univ  /\  ~P A  e.  U )  ->  ~P A  C_  U
)
53, 4syldan 487 . . . 4  |-  ( ( U  e.  Univ  /\  A  e.  U )  ->  ~P A  C_  U )
65sseld 3602 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  U )  ->  ( B  e.  ~P A  ->  B  e.  U ) )
72, 6sylbird 250 . 2  |-  ( ( U  e.  Univ  /\  A  e.  U )  ->  ( B  C_  A  ->  B  e.  U ) )
873impia 1261 1  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  B  C_  A )  ->  B  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-tr 4753  df-iota 5851  df-fv 5896  df-ov 6653  df-gru 9613
This theorem is referenced by:  grurn  9623  gruima  9624  gruxp  9629  grumap  9630  gruixp  9631  gruiin  9632  grudomon  9639  gruina  9640
  Copyright terms: Public domain W3C validator