MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   Unicode version

Theorem grudomon 9639
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )

Proof of Theorem grudomon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  B  <->  y  ~<_  B ) )
2 eleq1 2689 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  U  <->  y  e.  U ) )
31, 2imbi12d 334 . . . . . . 7  |-  ( x  =  y  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( y  ~<_  B  ->  y  e.  U ) ) )
43imbi2d 330 . . . . . 6  |-  ( x  =  y  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  ~<_  B  ->  y  e.  U ) ) ) )
5 breq1 4656 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ~<_  B  <->  A  ~<_  B ) )
6 eleq1 2689 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  U  <->  A  e.  U ) )
75, 6imbi12d 334 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( A  ~<_  B  ->  A  e.  U ) ) )
87imbi2d 330 . . . . . 6  |-  ( x  =  A  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U ) ) ) )
9 r19.21v 2960 . . . . . . 7  |-  ( A. y  e.  x  (
( U  e.  Univ  /\  B  e.  U )  ->  ( y  ~<_  B  ->  y  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) ) )
10 simpl1 1064 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  x  e.  On )
11 vex 3203 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
12 onelss 5766 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
1312imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  C_  x )
14 ssdomg 8001 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  (
y  C_  x  ->  y  ~<_  x ) )
1511, 13, 14mpsyl 68 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  ~<_  x )
1610, 15sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  x )
17 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  x  ~<_  B )
18 domtr 8009 . . . . . . . . . . . . . . 15  |-  ( ( y  ~<_  x  /\  x  ~<_  B )  ->  y  ~<_  B )
1916, 17, 18syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  B )
20 pm2.27 42 . . . . . . . . . . . . . 14  |-  ( y  ~<_  B  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2119, 20syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2221ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  A. y  e.  x  y  e.  U )
)
23 dfss3 3592 . . . . . . . . . . . . 13  |-  ( x 
C_  U  <->  A. y  e.  x  y  e.  U )
24 domeng 7969 . . . . . . . . . . . . . . . 16  |-  ( B  e.  U  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
25243ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
2625biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  E. y
( x  ~~  y  /\  y  C_  B ) )
27 simpl2 1065 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  U  e.  Univ )
28 gruss 9618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  y  C_  B )  ->  y  e.  U )
29283expia 1267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
30293adant1 1079 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
3130adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
y  C_  B  ->  y  e.  U ) )
32 ensym 8005 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
~~  y  ->  y  ~~  x )
3332a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  ~~  y  ->  y 
~~  x ) )
3431, 33anim12d 586 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( y  C_  B  /\  x  ~~  y )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3534ancomsd 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( x  ~~  y  /\  y  C_  B )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3635eximdv 1846 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  E. y
( y  e.  U  /\  y  ~~  x ) ) )
37 gruen 9634 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  C_  U  /\  ( y  e.  U  /\  y  ~~  x ) )  ->  x  e.  U )
38373com23 1271 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  (
y  e.  U  /\  y  ~~  x )  /\  x  C_  U )  ->  x  e.  U )
39383exp 1264 . . . . . . . . . . . . . . . 16  |-  ( U  e.  Univ  ->  ( ( y  e.  U  /\  y  ~~  x )  -> 
( x  C_  U  ->  x  e.  U ) ) )
4039exlimdv 1861 . . . . . . . . . . . . . . 15  |-  ( U  e.  Univ  ->  ( E. y ( y  e.  U  /\  y  ~~  x )  ->  (
x  C_  U  ->  x  e.  U ) ) )
4127, 36, 40sylsyld 61 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  ( x  C_  U  ->  x  e.  U ) ) )
4226, 41mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  C_  U  ->  x  e.  U ) )
4323, 42syl5bir 233 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  y  e.  U  ->  x  e.  U ) )
4422, 43syld 47 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) )
4544ex 450 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) ) )
4645com23 86 . . . . . . . . 9  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) )
47463expib 1268 . . . . . . . 8  |-  ( x  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
4847a2d 29 . . . . . . 7  |-  ( x  e.  On  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
499, 48syl5bi 232 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
504, 8, 49tfis3 7057 . . . . 5  |-  ( A  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U
) ) )
5150com3l 89 . . . 4  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  ( A  e.  On  ->  A  e.  U ) ) )
5251impr 649 . . 3  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  ( A  e.  On  ->  A  e.  U ) )
53523impia 1261 . 2  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B )  /\  A  e.  On )  ->  A  e.  U )
54533com23 1271 1  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   Oncon0 5723    ~~ cen 7952    ~<_ cdom 7953   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-gru 9613
This theorem is referenced by:  gruina  9640  grur1  9642
  Copyright terms: Public domain W3C validator