Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapffval Structured version   Visualization version   Unicode version

Theorem hdmapffval 37118
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypothesis
Ref Expression
hdmapval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hdmapffval  |-  ( K  e.  X  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
Distinct variable groups:    w, H    e, a, i, t, u, v, w, y, z, K
Allowed substitution hints:    H( y, z, v, u, t, e, i, a)    X( y, z, w, v, u, t, e, i, a)

Proof of Theorem hdmapffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hdmapval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
65reseq2d 5396 . . . . . . 7  |-  ( k  =  K  ->  (  _I  |`  ( Base `  k
) )  =  (  _I  |`  ( Base `  K ) ) )
7 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
87fveq1d 6193 . . . . . . . 8  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
98reseq2d 5396 . . . . . . 7  |-  ( k  =  K  ->  (  _I  |`  ( ( LTrn `  k ) `  w
) )  =  (  _I  |`  ( ( LTrn `  K ) `  w ) ) )
106, 9opeq12d 4410 . . . . . 6  |-  ( k  =  K  ->  <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.
)
11 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1211fveq1d 6193 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
13 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  K  ->  (HDMap1 `  k )  =  (HDMap1 `  K ) )
1413fveq1d 6193 . . . . . . . . 9  |-  ( k  =  K  ->  (
(HDMap1 `  k ) `  w )  =  ( (HDMap1 `  K ) `  w ) )
15 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  (LCDual `  k )  =  (LCDual `  K ) )
1615fveq1d 6193 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (
(LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w ) )
1716fveq2d 6195 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( Base `  ( (LCDual `  k ) `  w
) )  =  (
Base `  ( (LCDual `  K ) `  w
) ) )
18 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  K  ->  (HVMap `  k )  =  (HVMap `  K ) )
1918fveq1d 6193 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  K  ->  (
(HVMap `  k ) `  w )  =  ( (HVMap `  K ) `  w ) )
2019fveq1d 6193 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  K  ->  (
( (HVMap `  k
) `  w ) `  e )  =  ( ( (HVMap `  K
) `  w ) `  e ) )
2120oteq2d 4415 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  K  ->  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >.  =  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. )
2221fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( k  =  K  ->  (
i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. )  =  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) )
2322oteq2d 4415 . . . . . . . . . . . . . . . 16  |-  ( k  =  K  ->  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.  =  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
2423fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( k  =  K  ->  (
i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )  =  ( i `  <. z ,  ( i `
 <. e ,  ( ( (HVMap `  K
) `  w ) `  e ) ,  z
>. ) ,  t >.
) )
2524eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  (
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )  <->  y  =  ( i `  <. z ,  ( i `
 <. e ,  ( ( (HVMap `  K
) `  w ) `  e ) ,  z
>. ) ,  t >.
) ) )
2625imbi2d 330 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (
( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
)  <->  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
) ) )
2726ralbidv 2986 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( A. z  e.  v 
( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
)  <->  A. z  e.  v  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w
) `  e ) ,  z >. ) ,  t >. )
) ) )
2817, 27riotaeqbidv 6614 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( iota_ y  e.  ( Base `  ( (LCDual `  k
) `  w )
) A. z  e.  v  ( -.  z  e.  ( ( ( LSpan `  u ) `  {
e } )  u.  ( ( LSpan `  u
) `  { t } ) )  -> 
y  =  ( i `
 <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w
) `  e ) ,  z >. ) ,  t >. )
) )  =  (
iota_ y  e.  ( Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )
2928mpteq2dv 4745 . . . . . . . . . 10  |-  ( k  =  K  ->  (
t  e.  v  |->  (
iota_ y  e.  ( Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  =  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) )
3029eleq2d 2687 . . . . . . . . 9  |-  ( k  =  K  ->  (
a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <-> 
a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3114, 30sbceqbid 3442 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3231sbcbidv 3490 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3312, 32sbceqbid 3442 . . . . . 6  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  k ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  k ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( (HDMap1 `  K ) `  w
)  /  i ]. a  e.  ( t  e.  v  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  w ) ) A. z  e.  v  ( -.  z  e.  (
( ( LSpan `  u
) `  { e } )  u.  (
( LSpan `  u ) `  { t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3410, 33sbceqbid 3442 . . . . 5  |-  ( k  =  K  ->  ( [. <. (  _I  |`  ( Base `  k ) ) ,  (  _I  |`  (
( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) )  <->  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) ) )
3534abbidv 2741 . . . 4  |-  ( k  =  K  ->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) }  =  { a  |  [. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )
364, 35mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
37 df-hdmap 37084 . . 3  |- HDMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. <. (  _I  |`  ( Base `  k
) ) ,  (  _I  |`  ( ( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
38 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
393, 38eqeltri 2697 . . . 4  |-  H  e. 
_V
4039mptex 6486 . . 3  |-  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } )  e.  _V
4136, 37, 40fvmpt 6282 . 2  |-  ( K  e.  _V  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
421, 41syl 17 1  |-  ( K  e.  X  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  w ) ) >.  /  e ]. [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  K
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  K ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   [.wsbc 3435    u. cun 3572   {csn 4177   <.cop 4183   <.cotp 4185    |-> cmpt 4729    _I cid 5023    |` cres 5116   ` cfv 5888   iota_crio 6610   Basecbs 15857   LSpanclspn 18971   LHypclh 35270   LTrncltrn 35387   DVecHcdvh 36367  LCDualclcd 36875  HVMapchvm 37045  HDMap1chdma1 37081  HDMapchdma 37082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-hdmap 37084
This theorem is referenced by:  hdmapfval  37119
  Copyright terms: Public domain W3C validator