MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   Unicode version

Theorem hlphl 23161
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl  |-  ( W  e.  CHil  ->  W  e. 
PreHil )

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 23160 . 2  |-  ( W  e.  CHil  ->  W  e.  CPreHil )
2 cphphl 22971 . 2  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
31, 2syl 17 1  |-  ( W  e.  CHil  ->  W  e. 
PreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   PreHilcphl 19969   CPreHilccph 22966   CHilchl 23131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-cph 22968  df-hl 23134
This theorem is referenced by:  pjthlem1  23208  pjth  23210  pjth2  23211  cldcss  23212  hlhil  23214
  Copyright terms: Public domain W3C validator