Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspval Structured version   Visualization version   Unicode version

Theorem hoidifhspval 40822
Description:  D is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspval.d  |-  D  =  ( x  e.  RR  |->  ( a  e.  ( RR  ^m  X ) 
|->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) ) )
hoidifhspval.y  |-  ( ph  ->  Y  e.  RR )
Assertion
Ref Expression
hoidifhspval  |-  ( ph  ->  ( D `  Y
)  =  ( a  e.  ( RR  ^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  (
a `  k ) ,  ( a `  k ) ,  Y
) ,  ( a `
 k ) ) ) ) )
Distinct variable groups:    x, k    x, K    X, a, x    Y, a, x    k, Y    ph, x
Allowed substitution hints:    ph( k, a)    D( x, k, a)    K( k, a)    X( k)

Proof of Theorem hoidifhspval
StepHypRef Expression
1 hoidifhspval.d . . 3  |-  D  =  ( x  e.  RR  |->  ( a  e.  ( RR  ^m  X ) 
|->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) ) )
21a1i 11 . 2  |-  ( ph  ->  D  =  ( x  e.  RR  |->  ( a  e.  ( RR  ^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  (
a `  k ) ,  ( a `  k ) ,  x
) ,  ( a `
 k ) ) ) ) ) )
3 breq1 4656 . . . . . . 7  |-  ( x  =  Y  ->  (
x  <_  ( a `  k )  <->  Y  <_  ( a `  k ) ) )
4 id 22 . . . . . . 7  |-  ( x  =  Y  ->  x  =  Y )
53, 4ifbieq2d 4111 . . . . . 6  |-  ( x  =  Y  ->  if ( x  <_  ( a `
 k ) ,  ( a `  k
) ,  x )  =  if ( Y  <_  ( a `  k ) ,  ( a `  k ) ,  Y ) )
65ifeq1d 4104 . . . . 5  |-  ( x  =  Y  ->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) )  =  if ( k  =  K ,  if ( Y  <_  ( a `  k ) ,  ( a `  k ) ,  Y ) ,  ( a `  k
) ) )
76mpteq2dv 4745 . . . 4  |-  ( x  =  Y  ->  (
k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) )  =  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( a `  k ) ,  ( a `  k ) ,  Y ) ,  ( a `  k
) ) ) )
87mpteq2dv 4745 . . 3  |-  ( x  =  Y  ->  (
a  e.  ( RR 
^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) )  =  ( a  e.  ( RR  ^m  X
)  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( a `
 k ) ,  ( a `  k
) ,  Y ) ,  ( a `  k ) ) ) ) )
98adantl 482 . 2  |-  ( (
ph  /\  x  =  Y )  ->  (
a  e.  ( RR 
^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) )  =  ( a  e.  ( RR  ^m  X
)  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( a `
 k ) ,  ( a `  k
) ,  Y ) ,  ( a `  k ) ) ) ) )
10 hoidifhspval.y . 2  |-  ( ph  ->  Y  e.  RR )
11 ovex 6678 . . . 4  |-  ( RR 
^m  X )  e. 
_V
1211mptex 6486 . . 3  |-  ( a  e.  ( RR  ^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  (
a `  k ) ,  ( a `  k ) ,  Y
) ,  ( a `
 k ) ) ) )  e.  _V
1312a1i 11 . 2  |-  ( ph  ->  ( a  e.  ( RR  ^m  X ) 
|->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( a `  k ) ,  ( a `  k ) ,  Y ) ,  ( a `  k
) ) ) )  e.  _V )
142, 9, 10, 13fvmptd 6288 1  |-  ( ph  ->  ( D `  Y
)  =  ( a  e.  ( RR  ^m  X )  |->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  (
a `  k ) ,  ( a `  k ) ,  Y
) ,  ( a `
 k ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  hoidifhspval2  40829
  Copyright terms: Public domain W3C validator