Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoi2toco Structured version   Visualization version   Unicode version

Theorem hoi2toco 40821
Description: The half-open interval expressed using a composition of a function into  ( RR  X.  RR ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoi2toco.1  |-  F/ k
ph
hoi2toco.c  |-  I  =  ( k  e.  X  |-> 
<. ( A `  k
) ,  ( B `
 k ) >.
)
Assertion
Ref Expression
hoi2toco  |-  ( ph  -> 
X_ k  e.  X  ( ( [,)  o.  I ) `  k
)  =  X_ k  e.  X  ( ( A `  k ) [,) ( B `  k
) ) )
Distinct variable group:    k, X
Allowed substitution hints:    ph( k)    A( k)    B( k)    I( k)

Proof of Theorem hoi2toco
StepHypRef Expression
1 hoi2toco.1 . 2  |-  F/ k
ph
2 hoi2toco.c . . . . . . 7  |-  I  =  ( k  e.  X  |-> 
<. ( A `  k
) ,  ( B `
 k ) >.
)
32funmpt2 5927 . . . . . 6  |-  Fun  I
43a1i 11 . . . . 5  |-  ( ph  ->  Fun  I )
54adantr 481 . . . 4  |-  ( (
ph  /\  k  e.  X )  ->  Fun  I )
6 simpr 477 . . . . 5  |-  ( (
ph  /\  k  e.  X )  ->  k  e.  X )
72dmeqi 5325 . . . . . . . 8  |-  dom  I  =  dom  ( k  e.  X  |->  <. ( A `  k ) ,  ( B `  k )
>. )
87a1i 11 . . . . . . 7  |-  ( ph  ->  dom  I  =  dom  ( k  e.  X  |-> 
<. ( A `  k
) ,  ( B `
 k ) >.
) )
9 opex 4932 . . . . . . . . . 10  |-  <. ( A `  k ) ,  ( B `  k ) >.  e.  _V
1092a1i 12 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  X  -> 
<. ( A `  k
) ,  ( B `
 k ) >.  e.  _V ) )
111, 10ralrimi 2957 . . . . . . . 8  |-  ( ph  ->  A. k  e.  X  <. ( A `  k
) ,  ( B `
 k ) >.  e.  _V )
12 dmmptg 5632 . . . . . . . 8  |-  ( A. k  e.  X  <. ( A `  k ) ,  ( B `  k ) >.  e.  _V  ->  dom  ( k  e.  X  |->  <. ( A `  k ) ,  ( B `  k )
>. )  =  X
)
1311, 12syl 17 . . . . . . 7  |-  ( ph  ->  dom  ( k  e.  X  |->  <. ( A `  k ) ,  ( B `  k )
>. )  =  X
)
148, 13eqtr2d 2657 . . . . . 6  |-  ( ph  ->  X  =  dom  I
)
1514adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  X )  ->  X  =  dom  I )
166, 15eleqtrd 2703 . . . 4  |-  ( (
ph  /\  k  e.  X )  ->  k  e.  dom  I )
17 fvco 6274 . . . 4  |-  ( ( Fun  I  /\  k  e.  dom  I )  -> 
( ( [,)  o.  I ) `  k
)  =  ( [,) `  ( I `  k
) ) )
185, 16, 17syl2anc 693 . . 3  |-  ( (
ph  /\  k  e.  X )  ->  (
( [,)  o.  I
) `  k )  =  ( [,) `  (
I `  k )
) )
199a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  X )  ->  <. ( A `  k ) ,  ( B `  k ) >.  e.  _V )
202fvmpt2 6291 . . . . 5  |-  ( ( k  e.  X  /\  <.
( A `  k
) ,  ( B `
 k ) >.  e.  _V )  ->  (
I `  k )  =  <. ( A `  k ) ,  ( B `  k )
>. )
216, 19, 20syl2anc 693 . . . 4  |-  ( (
ph  /\  k  e.  X )  ->  (
I `  k )  =  <. ( A `  k ) ,  ( B `  k )
>. )
2221fveq2d 6195 . . 3  |-  ( (
ph  /\  k  e.  X )  ->  ( [,) `  ( I `  k ) )  =  ( [,) `  <. ( A `  k ) ,  ( B `  k ) >. )
)
23 df-ov 6653 . . . . 5  |-  ( ( A `  k ) [,) ( B `  k ) )  =  ( [,) `  <. ( A `  k ) ,  ( B `  k ) >. )
2423eqcomi 2631 . . . 4  |-  ( [,) `  <. ( A `  k ) ,  ( B `  k )
>. )  =  (
( A `  k
) [,) ( B `
 k ) )
2524a1i 11 . . 3  |-  ( (
ph  /\  k  e.  X )  ->  ( [,) `  <. ( A `  k ) ,  ( B `  k )
>. )  =  (
( A `  k
) [,) ( B `
 k ) ) )
2618, 22, 253eqtrd 2660 . 2  |-  ( (
ph  /\  k  e.  X )  ->  (
( [,)  o.  I
) `  k )  =  ( ( A `
 k ) [,) ( B `  k
) ) )
271, 26ixpeq2d 39237 1  |-  ( ph  -> 
X_ k  e.  X  ( ( [,)  o.  I ) `  k
)  =  X_ k  e.  X  ( ( A `  k ) [,) ( B `  k
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   X_cixp 7908   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-ixp 7909
This theorem is referenced by:  opnvonmbllem1  40846
  Copyright terms: Public domain W3C validator