Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapffval Structured version   Visualization version   Unicode version

Theorem hvmapffval 37047
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypothesis
Ref Expression
hvmapval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hvmapffval  |-  ( K  e.  X  ->  (HVMap `  K )  =  ( w  e.  H  |->  ( x  e.  ( (
Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
Distinct variable groups:    w, H    t, j, v, x, w, K
Allowed substitution hints:    H( x, v, t, j)    X( x, w, v, t, j)

Proof of Theorem hvmapffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hvmapval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 6193 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 6195 . . . . . 6  |-  ( k  =  K  ->  ( Base `  ( ( DVecH `  k ) `  w
) )  =  (
Base `  ( ( DVecH `  K ) `  w ) ) )
86fveq2d 6195 . . . . . . 7  |-  ( k  =  K  ->  ( 0g `  ( ( DVecH `  k ) `  w
) )  =  ( 0g `  ( (
DVecH `  K ) `  w ) ) )
98sneqd 4189 . . . . . 6  |-  ( k  =  K  ->  { ( 0g `  ( (
DVecH `  k ) `  w ) ) }  =  { ( 0g
`  ( ( DVecH `  K ) `  w
) ) } )
107, 9difeq12d 3729 . . . . 5  |-  ( k  =  K  ->  (
( Base `  ( ( DVecH `  k ) `  w ) )  \  { ( 0g `  ( ( DVecH `  k
) `  w )
) } )  =  ( ( Base `  (
( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } ) )
116fveq2d 6195 . . . . . . . 8  |-  ( k  =  K  ->  (Scalar `  ( ( DVecH `  k
) `  w )
)  =  (Scalar `  ( ( DVecH `  K
) `  w )
) )
1211fveq2d 6195 . . . . . . 7  |-  ( k  =  K  ->  ( Base `  (Scalar `  (
( DVecH `  k ) `  w ) ) )  =  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) )
13 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  K  ->  ( ocH `  k )  =  ( ocH `  K
) )
1413fveq1d 6193 . . . . . . . . 9  |-  ( k  =  K  ->  (
( ocH `  k
) `  w )  =  ( ( ocH `  K ) `  w
) )
1514fveq1d 6193 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  { x } )  =  ( ( ( ocH `  K ) `
 w ) `  { x } ) )
166fveq2d 6195 . . . . . . . . . 10  |-  ( k  =  K  ->  ( +g  `  ( ( DVecH `  k ) `  w
) )  =  ( +g  `  ( (
DVecH `  K ) `  w ) ) )
17 eqidd 2623 . . . . . . . . . 10  |-  ( k  =  K  ->  t  =  t )
186fveq2d 6195 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( .s `  ( ( DVecH `  k ) `  w
) )  =  ( .s `  ( (
DVecH `  K ) `  w ) ) )
1918oveqd 6667 . . . . . . . . . 10  |-  ( k  =  K  ->  (
j ( .s `  ( ( DVecH `  k
) `  w )
) x )  =  ( j ( .s
`  ( ( DVecH `  K ) `  w
) ) x ) )
2016, 17, 19oveq123d 6671 . . . . . . . . 9  |-  ( k  =  K  ->  (
t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) )  =  ( t ( +g  `  ( (
DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) )
2120eqeq2d 2632 . . . . . . . 8  |-  ( k  =  K  ->  (
v  =  ( t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) )  <-> 
v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) )
2215, 21rexeqbidv 3153 . . . . . . 7  |-  ( k  =  K  ->  ( E. t  e.  (
( ( ocH `  k
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) )  <->  E. t  e.  (
( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) )
2312, 22riotaeqbidv 6614 . . . . . 6  |-  ( k  =  K  ->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  k ) `  w ) ) ) E. t  e.  ( ( ( ocH `  k
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) ) )  =  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) )
247, 23mpteq12dv 4733 . . . . 5  |-  ( k  =  K  ->  (
v  e.  ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  k
) `  w )
) ) E. t  e.  ( ( ( ocH `  k ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  k
) `  w )
) ( j ( .s `  ( (
DVecH `  k ) `  w ) ) x ) ) ) )  =  ( v  e.  ( Base `  (
( DVecH `  K ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) ) )
2510, 24mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
x  e.  ( (
Base `  ( ( DVecH `  k ) `  w ) )  \  { ( 0g `  ( ( DVecH `  k
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  k
) `  w )
) ) E. t  e.  ( ( ( ocH `  k ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  k
) `  w )
) ( j ( .s `  ( (
DVecH `  k ) `  w ) ) x ) ) ) ) )  =  ( x  e.  ( ( Base `  ( ( DVecH `  K
) `  w )
)  \  { ( 0g `  ( ( DVecH `  K ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  K ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) ) ) )
264, 25mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ( ( Base `  ( ( DVecH `  k
) `  w )
)  \  { ( 0g `  ( ( DVecH `  k ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  k ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  k ) `  w ) ) ) E. t  e.  ( ( ( ocH `  k
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ( ( Base `  (
( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
27 df-hvmap 37046 . . 3  |- HVMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( ( Base `  ( ( DVecH `  k
) `  w )
)  \  { ( 0g `  ( ( DVecH `  k ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  k ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  k ) `  w ) ) ) E. t  e.  ( ( ( ocH `  k
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
) `  w )
) x ) ) ) ) ) ) )
28 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
293, 28eqeltri 2697 . . . 4  |-  H  e. 
_V
3029mptex 6486 . . 3  |-  ( w  e.  H  |->  ( x  e.  ( ( Base `  ( ( DVecH `  K
) `  w )
)  \  { ( 0g `  ( ( DVecH `  K ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  K ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) ) ) )  e.  _V
3126, 27, 30fvmpt 6282 . 2  |-  ( K  e.  _V  ->  (HVMap `  K )  =  ( w  e.  H  |->  ( x  e.  ( (
Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
321, 31syl 17 1  |-  ( K  e.  X  ->  (HVMap `  K )  =  ( w  e.  H  |->  ( x  e.  ( (
Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571   {csn 4177    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LHypclh 35270   DVecHcdvh 36367   ocHcoch 36636  HVMapchvm 37045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-hvmap 37046
This theorem is referenced by:  hvmapfval  37048
  Copyright terms: Public domain W3C validator