| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf2 | Structured version Visualization version Unicode version | ||
| Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 8536 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf1.1 |
|
| Ref | Expression |
|---|---|
| inf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf1.1 |
. . 3
| |
| 2 | 1 | inf1 8519 |
. 2
|
| 3 | dfss2 3591 |
. . . . 5
| |
| 4 | eluni 4439 |
. . . . . . 7
| |
| 5 | 4 | imbi2i 326 |
. . . . . 6
|
| 6 | 5 | albii 1747 |
. . . . 5
|
| 7 | 3, 6 | bitri 264 |
. . . 4
|
| 8 | 7 | anbi2i 730 |
. . 3
|
| 9 | 8 | exbii 1774 |
. 2
|
| 10 | 2, 9 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-uni 4437 |
| This theorem is referenced by: axinf2 8537 |
| Copyright terms: Public domain | W3C validator |