MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lema Structured version   Visualization version   Unicode version

Theorem inf3lema 8521
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lema  |-  ( A  e.  ( G `  B )  <->  ( A  e.  x  /\  ( A  i^i  x )  C_  B ) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lema
Dummy variables  v 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 3807 . . 3  |-  ( f  =  A  ->  (
f  i^i  x )  =  ( A  i^i  x ) )
21sseq1d 3632 . 2  |-  ( f  =  A  ->  (
( f  i^i  x
)  C_  B  <->  ( A  i^i  x )  C_  B
) )
3 inf3lem.4 . . 3  |-  B  e. 
_V
4 sseq2 3627 . . . . 5  |-  ( v  =  B  ->  (
( f  i^i  x
)  C_  v  <->  ( f  i^i  x )  C_  B
) )
54rabbidv 3189 . . . 4  |-  ( v  =  B  ->  { f  e.  x  |  ( f  i^i  x ) 
C_  v }  =  { f  e.  x  |  ( f  i^i  x )  C_  B } )
6 inf3lem.1 . . . . 5  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
7 sseq2 3627 . . . . . . . 8  |-  ( y  =  v  ->  (
( w  i^i  x
)  C_  y  <->  ( w  i^i  x )  C_  v
) )
87rabbidv 3189 . . . . . . 7  |-  ( y  =  v  ->  { w  e.  x  |  (
w  i^i  x )  C_  y }  =  {
w  e.  x  |  ( w  i^i  x
)  C_  v }
)
9 ineq1 3807 . . . . . . . . 9  |-  ( w  =  f  ->  (
w  i^i  x )  =  ( f  i^i  x ) )
109sseq1d 3632 . . . . . . . 8  |-  ( w  =  f  ->  (
( w  i^i  x
)  C_  v  <->  ( f  i^i  x )  C_  v
) )
1110cbvrabv 3199 . . . . . . 7  |-  { w  e.  x  |  (
w  i^i  x )  C_  v }  =  {
f  e.  x  |  ( f  i^i  x
)  C_  v }
128, 11syl6eq 2672 . . . . . 6  |-  ( y  =  v  ->  { w  e.  x  |  (
w  i^i  x )  C_  y }  =  {
f  e.  x  |  ( f  i^i  x
)  C_  v }
)
1312cbvmptv 4750 . . . . 5  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( v  e.  _V  |->  { f  e.  x  |  ( f  i^i  x )  C_  v } )
146, 13eqtri 2644 . . . 4  |-  G  =  ( v  e.  _V  |->  { f  e.  x  |  ( f  i^i  x )  C_  v } )
15 vex 3203 . . . . 5  |-  x  e. 
_V
1615rabex 4813 . . . 4  |-  { f  e.  x  |  ( f  i^i  x ) 
C_  B }  e.  _V
175, 14, 16fvmpt 6282 . . 3  |-  ( B  e.  _V  ->  ( G `  B )  =  { f  e.  x  |  ( f  i^i  x )  C_  B } )
183, 17ax-mp 5 . 2  |-  ( G `
 B )  =  { f  e.  x  |  ( f  i^i  x )  C_  B }
192, 18elrab2 3366 1  |-  ( A  e.  ( G `  B )  <->  ( A  e.  x  /\  ( A  i^i  x )  C_  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    |` cres 5116   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  inf3lemd  8524  inf3lem1  8525  inf3lem2  8526  inf3lem3  8527
  Copyright terms: Public domain W3C validator