MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexrab Structured version   Visualization version   Unicode version

Theorem intexrab 4823
Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexrab  |-  ( E. x  e.  A  ph  <->  |^|
{ x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrab
StepHypRef Expression
1 intexab 4822 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  |^|
{ x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2918 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2921 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 4479 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2692 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53bitr4i 292 1  |-  ( E. x  e.  A  ph  <->  |^|
{ x  e.  A  |  ph }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   _Vcvv 3200   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476
This theorem is referenced by:  onintrab2  7002  rankf  8657  rankvalb  8660  cardf2  8769  tskmval  9661  lspval  18975  aspval  19328  clsval  20841  spanval  28192  rgspnval  37738
  Copyright terms: Public domain W3C validator