| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardf2 | Structured version Visualization version Unicode version | ||
| Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| cardf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-card 8765 |
. . . 4
| |
| 2 | 1 | funmpt2 5927 |
. . 3
|
| 3 | rabab 3223 |
. . . 4
| |
| 4 | 1 | dmmpt 5630 |
. . . 4
|
| 5 | intexrab 4823 |
. . . . 5
| |
| 6 | 5 | abbii 2739 |
. . . 4
|
| 7 | 3, 4, 6 | 3eqtr4i 2654 |
. . 3
|
| 8 | df-fn 5891 |
. . 3
| |
| 9 | 2, 7, 8 | mpbir2an 955 |
. 2
|
| 10 | simpr 477 |
. . . . . . . . 9
| |
| 11 | vex 3203 |
. . . . . . . . 9
| |
| 12 | 10, 11 | syl6eqelr 2710 |
. . . . . . . 8
|
| 13 | intex 4820 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylibr 224 |
. . . . . . 7
|
| 15 | rabn0 3958 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 208 |
. . . . . 6
|
| 17 | vex 3203 |
. . . . . . 7
| |
| 18 | breq2 4657 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 3052 |
. . . . . . 7
|
| 20 | 17, 19 | elab 3350 |
. . . . . 6
|
| 21 | 16, 20 | sylibr 224 |
. . . . 5
|
| 22 | ssrab2 3687 |
. . . . . . 7
| |
| 23 | oninton 7000 |
. . . . . . 7
| |
| 24 | 22, 14, 23 | sylancr 695 |
. . . . . 6
|
| 25 | 10, 24 | eqeltrd 2701 |
. . . . 5
|
| 26 | 21, 25 | jca 554 |
. . . 4
|
| 27 | 26 | ssopab2i 5003 |
. . 3
|
| 28 | df-card 8765 |
. . . 4
| |
| 29 | df-mpt 4730 |
. . . 4
| |
| 30 | 28, 29 | eqtri 2644 |
. . 3
|
| 31 | df-xp 5120 |
. . 3
| |
| 32 | 27, 30, 31 | 3sstr4i 3644 |
. 2
|
| 33 | dff2 6371 |
. 2
| |
| 34 | 9, 32, 33 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-fun 5890 df-fn 5891 df-f 5892 df-card 8765 |
| This theorem is referenced by: cardon 8770 isnum2 8771 cardf 9372 smobeth 9408 hashkf 13119 hashgval 13120 |
| Copyright terms: Public domain | W3C validator |