MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardf2 Structured version   Visualization version   Unicode version

Theorem cardf2 8769
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardf2  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
Distinct variable group:    x, y

Proof of Theorem cardf2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-card 8765 . . . 4  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
21funmpt2 5927 . . 3  |-  Fun  card
3 rabab 3223 . . . 4  |-  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  =  { x  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }
41dmmpt 5630 . . . 4  |-  dom  card  =  { x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }
5 intexrab 4823 . . . . 5  |-  ( E. y  e.  On  y  ~~  x  <->  |^| { y  e.  On  |  y  ~~  x }  e.  _V )
65abbii 2739 . . . 4  |-  { x  |  E. y  e.  On  y  ~~  x }  =  { x  |  |^| { y  e.  On  | 
y  ~~  x }  e.  _V }
73, 4, 63eqtr4i 2654 . . 3  |-  dom  card  =  { x  |  E. y  e.  On  y  ~~  x }
8 df-fn 5891 . . 3  |-  ( card 
Fn  { x  |  E. y  e.  On  y  ~~  x }  <->  ( Fun  card  /\  dom  card  =  {
x  |  E. y  e.  On  y  ~~  x } ) )
92, 7, 8mpbir2an 955 . 2  |-  card  Fn  { x  |  E. y  e.  On  y  ~~  x }
10 simpr 477 . . . . . . . . 9  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  w  =  |^| { y  e.  On  | 
y  ~~  z }
)
11 vex 3203 . . . . . . . . 9  |-  w  e. 
_V
1210, 11syl6eqelr 2710 . . . . . . . 8  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  |^| { y  e.  On  |  y  ~~  z }  e.  _V )
13 intex 4820 . . . . . . . 8  |-  ( { y  e.  On  | 
y  ~~  z }  =/=  (/)  <->  |^| { y  e.  On  |  y  ~~  z }  e.  _V )
1412, 13sylibr 224 . . . . . . 7  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  { y  e.  On  |  y  ~~  z }  =/=  (/) )
15 rabn0 3958 . . . . . . 7  |-  ( { y  e.  On  | 
y  ~~  z }  =/=  (/)  <->  E. y  e.  On  y  ~~  z )
1614, 15sylib 208 . . . . . 6  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  E. y  e.  On  y  ~~  z )
17 vex 3203 . . . . . . 7  |-  z  e. 
_V
18 breq2 4657 . . . . . . . 8  |-  ( x  =  z  ->  (
y  ~~  x  <->  y  ~~  z ) )
1918rexbidv 3052 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  On  y  ~~  x  <->  E. y  e.  On  y  ~~  z
) )
2017, 19elab 3350 . . . . . 6  |-  ( z  e.  { x  |  E. y  e.  On  y  ~~  x }  <->  E. y  e.  On  y  ~~  z
)
2116, 20sylibr 224 . . . . 5  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  z  e.  {
x  |  E. y  e.  On  y  ~~  x } )
22 ssrab2 3687 . . . . . . 7  |-  { y  e.  On  |  y 
~~  z }  C_  On
23 oninton 7000 . . . . . . 7  |-  ( ( { y  e.  On  |  y  ~~  z } 
C_  On  /\  { y  e.  On  |  y 
~~  z }  =/=  (/) )  ->  |^| { y  e.  On  |  y 
~~  z }  e.  On )
2422, 14, 23sylancr 695 . . . . . 6  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  |^| { y  e.  On  |  y  ~~  z }  e.  On )
2510, 24eqeltrd 2701 . . . . 5  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  w  e.  On )
2621, 25jca 554 . . . 4  |-  ( ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } )  ->  ( z  e. 
{ x  |  E. y  e.  On  y  ~~  x }  /\  w  e.  On ) )
2726ssopab2i 5003 . . 3  |-  { <. z ,  w >.  |  ( z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } ) }  C_  { <. z ,  w >.  |  (
z  e.  { x  |  E. y  e.  On  y  ~~  x }  /\  w  e.  On ) }
28 df-card 8765 . . . 4  |-  card  =  ( z  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  z } )
29 df-mpt 4730 . . . 4  |-  ( z  e.  _V  |->  |^| { y  e.  On  |  y 
~~  z } )  =  { <. z ,  w >.  |  (
z  e.  _V  /\  w  =  |^| { y  e.  On  |  y 
~~  z } ) }
3028, 29eqtri 2644 . . 3  |-  card  =  { <. z ,  w >.  |  ( z  e. 
_V  /\  w  =  |^| { y  e.  On  |  y  ~~  z } ) }
31 df-xp 5120 . . 3  |-  ( { x  |  E. y  e.  On  y  ~~  x }  X.  On )  =  { <. z ,  w >.  |  ( z  e. 
{ x  |  E. y  e.  On  y  ~~  x }  /\  w  e.  On ) }
3227, 30, 313sstr4i 3644 . 2  |-  card  C_  ( { x  |  E. y  e.  On  y  ~~  x }  X.  On )
33 dff2 6371 . 2  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  <->  ( card  Fn 
{ x  |  E. y  e.  On  y  ~~  x }  /\  card  C_  ( { x  |  E. y  e.  On  y  ~~  x }  X.  On ) ) )
349, 32, 33mpbir2an 955 1  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|cint 4475   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884    ~~ cen 7952   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-fun 5890  df-fn 5891  df-f 5892  df-card 8765
This theorem is referenced by:  cardon  8770  isnum2  8771  cardf  9372  smobeth  9408  hashkf  13119  hashgval  13120
  Copyright terms: Public domain W3C validator