MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankf Structured version   Visualization version   Unicode version

Theorem rankf 8657
Description: The domain and range of the  rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.)
Assertion
Ref Expression
rankf  |-  rank : U. ( R1 " On ) --> On

Proof of Theorem rankf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rank 8628 . . . 4  |-  rank  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
21funmpt2 5927 . . 3  |-  Fun  rank
3 mptv 4751 . . . . . 6  |-  ( x  e.  _V  |->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )  =  { <. x ,  z >.  |  z  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }
41, 3eqtri 2644 . . . . 5  |-  rank  =  { <. x ,  z
>.  |  z  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }
54dmeqi 5325 . . . 4  |-  dom  rank  =  dom  { <. x ,  z >.  |  z  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }
6 dmopab 5335 . . . . 5  |-  dom  { <. x ,  z >.  |  z  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } }  =  { x  |  E. z  z  = 
|^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }
7 abeq1 2733 . . . . . 6  |-  ( { x  |  E. z 
z  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }  =  U. ( R1 " On )  <->  A. x ( E. z  z  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  <-> 
x  e.  U. ( R1 " On ) ) )
8 rankwflemb 8656 . . . . . . 7  |-  ( x  e.  U. ( R1
" On )  <->  E. y  e.  On  x  e.  ( R1 `  suc  y
) )
9 intexrab 4823 . . . . . . 7  |-  ( E. y  e.  On  x  e.  ( R1 `  suc  y )  <->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  _V )
10 isset 3207 . . . . . . 7  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  e.  _V  <->  E. z 
z  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
118, 9, 103bitrri 287 . . . . . 6  |-  ( E. z  z  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  <-> 
x  e.  U. ( R1 " On ) )
127, 11mpgbir 1726 . . . . 5  |-  { x  |  E. z  z  = 
|^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } }  =  U. ( R1 " On )
136, 12eqtri 2644 . . . 4  |-  dom  { <. x ,  z >.  |  z  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } }  =  U. ( R1 " On )
145, 13eqtri 2644 . . 3  |-  dom  rank  = 
U. ( R1 " On )
15 df-fn 5891 . . 3  |-  ( rank 
Fn  U. ( R1 " On )  <->  ( Fun  rank  /\ 
dom  rank  =  U. ( R1 " On ) ) )
162, 14, 15mpbir2an 955 . 2  |-  rank  Fn  U. ( R1 " On )
17 rabn0 3958 . . . . 5  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/)  <->  E. y  e.  On  x  e.  ( R1 ` 
suc  y ) )
188, 17bitr4i 267 . . . 4  |-  ( x  e.  U. ( R1
" On )  <->  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  =/=  (/) )
19 intex 4820 . . . . . 6  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/)  <->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  _V )
20 vex 3203 . . . . . . 7  |-  x  e. 
_V
211fvmpt2 6291 . . . . . . 7  |-  ( ( x  e.  _V  /\  |^|
{ y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  _V )  ->  ( rank `  x
)  =  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
2220, 21mpan 706 . . . . . 6  |-  ( |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  e.  _V  ->  ( rank `  x )  = 
|^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
2319, 22sylbi 207 . . . . 5  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/)  ->  ( rank `  x )  =  |^| { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) } )
24 ssrab2 3687 . . . . . 6  |-  { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  C_  On
25 oninton 7000 . . . . . 6  |-  ( ( { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  C_  On  /\  {
y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/) )  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  On )
2624, 25mpan 706 . . . . 5  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/)  ->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) }  e.  On )
2723, 26eqeltrd 2701 . . . 4  |-  ( { y  e.  On  |  x  e.  ( R1 ` 
suc  y ) }  =/=  (/)  ->  ( rank `  x )  e.  On )
2818, 27sylbi 207 . . 3  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  e.  On )
2928rgen 2922 . 2  |-  A. x  e.  U. ( R1 " On ) ( rank `  x
)  e.  On
30 ffnfv 6388 . 2  |-  ( rank
: U. ( R1
" On ) --> On  <->  (
rank  Fn  U. ( R1 " On )  /\  A. x  e.  U. ( R1 " On ) (
rank `  x )  e.  On ) )
3116, 29, 30mpbir2an 955 1  |-  rank : U. ( R1 " On ) --> On
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|cint 4475   {copab 4712    |-> cmpt 4729   dom cdm 5114   "cima 5117   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankon  8658  rankvaln  8662  tcrank  8747  hsmexlem4  9251  hsmexlem5  9252  grur1  9642  aomclem4  37627
  Copyright terms: Public domain W3C validator