| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version Unicode version | ||
| Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| Ref | Expression |
|---|---|
| intexab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 3954 |
. 2
| |
| 2 | intex 4820 |
. 2
| |
| 3 | 1, 2 | bitr3i 266 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-int 4476 |
| This theorem is referenced by: intexrab 4823 tcmin 8617 cfval 9069 efgval 18130 relintabex 37887 rclexi 37922 rtrclex 37924 trclexi 37927 rtrclexi 37928 |
| Copyright terms: Public domain | W3C validator |