MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinexg Structured version   Visualization version   Unicode version

Theorem iinexg 4824
Description: The existence of a class intersection.  x is normally a free-variable parameter in  B, which should be read  B ( x ). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
iinexg  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem iinexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4553 . . 3  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
21adantl 482 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
3 elisset 3215 . . . . . . . . 9  |-  ( B  e.  C  ->  E. y 
y  =  B )
43rgenw 2924 . . . . . . . 8  |-  A. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B )
5 r19.2z 4060 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  ( B  e.  C  ->  E. y  y  =  B ) )  ->  E. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B ) )
64, 5mpan2 707 . . . . . . 7  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B ) )
7 r19.35 3084 . . . . . . 7  |-  ( E. x  e.  A  ( B  e.  C  ->  E. y  y  =  B )  <->  ( A. x  e.  A  B  e.  C  ->  E. x  e.  A  E. y 
y  =  B ) )
86, 7sylib 208 . . . . . 6  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  B  e.  C  ->  E. x  e.  A  E. y 
y  =  B ) )
98imp 445 . . . . 5  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  E. x  e.  A  E. y 
y  =  B )
10 rexcom4 3225 . . . . 5  |-  ( E. x  e.  A  E. y  y  =  B  <->  E. y E. x  e.  A  y  =  B )
119, 10sylib 208 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  E. y E. x  e.  A  y  =  B )
12 abn0 3954 . . . 4  |-  ( { y  |  E. x  e.  A  y  =  B }  =/=  (/)  <->  E. y E. x  e.  A  y  =  B )
1311, 12sylibr 224 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  { y  |  E. x  e.  A  y  =  B }  =/=  (/) )
14 intex 4820 . . 3  |-  ( { y  |  E. x  e.  A  y  =  B }  =/=  (/)  <->  |^| { y  |  E. x  e.  A  y  =  B }  e.  _V )
1513, 14sylib 208 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  _V )
162, 15eqeltrd 2701 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   |^|cint 4475   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476  df-iin 4523
This theorem is referenced by:  fclsval  21812  taylfval  24113  iinexd  39318  smflimlem1  40979  smfliminflem  41036
  Copyright terms: Public domain W3C validator