| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version Unicode version | ||
| Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex 4820 |
. . . 4
| |
| 2 | 1 | necon1bbii 2843 |
. . 3
|
| 3 | inteq 4478 |
. . . 4
| |
| 4 | int0 4490 |
. . . 4
| |
| 5 | 3, 4 | syl6eq 2672 |
. . 3
|
| 6 | 2, 5 | sylbi 207 |
. 2
|
| 7 | vprc 4796 |
. . 3
| |
| 8 | eleq1 2689 |
. . 3
| |
| 9 | 7, 8 | mtbiri 317 |
. 2
|
| 10 | 6, 9 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-int 4476 |
| This theorem is referenced by: intabs 4825 relintabex 37887 |
| Copyright terms: Public domain | W3C validator |