Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintabex Structured version   Visualization version   Unicode version

Theorem relintabex 37887
Description: If the intersection of a class is a relation, then the class is non-empty. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintabex  |-  ( Rel  |^| { x  |  ph }  ->  E. x ph )

Proof of Theorem relintabex
StepHypRef Expression
1 intnex 4821 . . . 4  |-  ( -. 
|^| { x  |  ph }  e.  _V  <->  |^| { x  |  ph }  =  _V )
2 0nelxp 5143 . . . . . . 7  |-  -.  (/)  e.  ( _V  X.  _V )
3 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
4 eleq1 2689 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x  e.  ( _V  X.  _V )  <->  (/)  e.  ( _V 
X.  _V ) ) )
54notbid 308 . . . . . . . 8  |-  ( x  =  (/)  ->  ( -.  x  e.  ( _V 
X.  _V )  <->  -.  (/)  e.  ( _V  X.  _V )
) )
63, 5spcev 3300 . . . . . . 7  |-  ( -.  (/)  e.  ( _V  X.  _V )  ->  E. x  -.  x  e.  ( _V  X.  _V ) )
72, 6ax-mp 5 . . . . . 6  |-  E. x  -.  x  e.  ( _V  X.  _V )
8 nss 3663 . . . . . . . 8  |-  ( -. 
_V  C_  ( _V  X.  _V )  <->  E. x ( x  e.  _V  /\  -.  x  e.  ( _V  X.  _V ) ) )
9 df-rex 2918 . . . . . . . 8  |-  ( E. x  e.  _V  -.  x  e.  ( _V  X.  _V )  <->  E. x
( x  e.  _V  /\ 
-.  x  e.  ( _V  X.  _V )
) )
10 rexv 3220 . . . . . . . 8  |-  ( E. x  e.  _V  -.  x  e.  ( _V  X.  _V )  <->  E. x  -.  x  e.  ( _V  X.  _V ) )
118, 9, 103bitr2i 288 . . . . . . 7  |-  ( -. 
_V  C_  ( _V  X.  _V )  <->  E. x  -.  x  e.  ( _V  X.  _V ) )
12 df-rel 5121 . . . . . . 7  |-  ( Rel 
_V 
<->  _V  C_  ( _V  X.  _V ) )
1311, 12xchnxbir 323 . . . . . 6  |-  ( -. 
Rel  _V  <->  E. x  -.  x  e.  ( _V  X.  _V ) )
147, 13mpbir 221 . . . . 5  |-  -.  Rel  _V
15 releq 5201 . . . . 5  |-  ( |^| { x  |  ph }  =  _V  ->  ( Rel  |^|
{ x  |  ph } 
<->  Rel  _V ) )
1614, 15mtbiri 317 . . . 4  |-  ( |^| { x  |  ph }  =  _V  ->  -.  Rel  |^| { x  |  ph }
)
171, 16sylbi 207 . . 3  |-  ( -. 
|^| { x  |  ph }  e.  _V  ->  -. 
Rel  |^| { x  | 
ph } )
1817con4i 113 . 2  |-  ( Rel  |^| { x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
19 intexab 4822 . 2  |-  ( E. x ph  <->  |^| { x  |  ph }  e.  _V )
2018, 19sylibr 224 1  |-  ( Rel  |^| { x  |  ph }  ->  E. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|cint 4475    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  relintab  37889
  Copyright terms: Public domain W3C validator