MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intopsn Structured version   Visualization version   Unicode version

Theorem intopsn 17253
Description: The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 19275. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  .o.  : ( B  X.  B ) --> B )
2 id 22 . . . . . 6  |-  ( B  =  { Z }  ->  B  =  { Z } )
32sqxpeqd 5141 . . . . 5  |-  ( B  =  { Z }  ->  ( B  X.  B
)  =  ( { Z }  X.  { Z } ) )
43, 2feq23d 6040 . . . 4  |-  ( B  =  { Z }  ->  (  .o.  : ( B  X.  B ) --> B  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
51, 4syl5ibcom 235 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  ->  .o. 
: ( { Z }  X.  { Z }
) --> { Z }
) )
6 fdm 6051 . . . . . . 7  |-  (  .o. 
: ( B  X.  B ) --> B  ->  dom  .o.  =  ( B  X.  B ) )
76eqcomd 2628 . . . . . 6  |-  (  .o. 
: ( B  X.  B ) --> B  -> 
( B  X.  B
)  =  dom  .o.  )
87adantr 481 . . . . 5  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  X.  B )  =  dom  .o.  )
9 fdm 6051 . . . . . 6  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  dom  .o.  =  ( { Z }  X.  { Z } ) )
109eqeq2d 2632 . . . . 5  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  ( ( B  X.  B )  =  dom  .o.  <->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
118, 10syl5ibcom 235 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
12 xpid11 5347 . . . 4  |-  ( ( B  X.  B )  =  ( { Z }  X.  { Z }
)  <->  B  =  { Z } )
1311, 12syl6ib 241 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  B  =  { Z }
) )
145, 13impbid 202 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
15 simpr 477 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  Z  e.  B )
16 xpsng 6406 . . . 4  |-  ( ( Z  e.  B  /\  Z  e.  B )  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1715, 16sylancom 701 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1817feq2d 6031 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  <->  .o.  : { <. Z ,  Z >. } --> { Z } ) )
19 opex 4932 . . . 4  |-  <. Z ,  Z >.  e.  _V
20 fsng 6404 . . . 4  |-  ( (
<. Z ,  Z >.  e. 
_V  /\  Z  e.  B )  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2119, 20mpan 706 . . 3  |-  ( Z  e.  B  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2221adantl 482 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : { <. Z ,  Z >. } --> { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2314, 18, 223bitrd 294 1  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    X. cxp 5112   dom cdm 5114   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  mgmb1mgm1  17254
  Copyright terms: Public domain W3C validator