MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrab Structured version   Visualization version   Unicode version

Theorem invdisjrab 4639
Description: The restricted class abstractions  { x  e.  B  |  C  =  y } for distinct  y  e.  A are disjoint. (Contributed by AV, 6-May-2020.)
Assertion
Ref Expression
invdisjrab  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Distinct variable groups:    x, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)

Proof of Theorem invdisjrab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . . . 6  |-  F/_ x
z
2 nfcv 2764 . . . . . 6  |-  F/_ x B
3 nfcsb1v 3549 . . . . . . 7  |-  F/_ x [_ z  /  x ]_ C
43nfeq1 2778 . . . . . 6  |-  F/ x [_ z  /  x ]_ C  =  y
5 csbeq1a 3542 . . . . . . 7  |-  ( x  =  z  ->  C  =  [_ z  /  x ]_ C )
65eqeq1d 2624 . . . . . 6  |-  ( x  =  z  ->  ( C  =  y  <->  [_ z  /  x ]_ C  =  y ) )
71, 2, 4, 6elrabf 3360 . . . . 5  |-  ( z  e.  { x  e.  B  |  C  =  y }  <->  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y ) )
8 ax-1 6 . . . . 5  |-  ( [_ z  /  x ]_ C  =  y  ->  ( y  e.  A  ->  [_ z  /  x ]_ C  =  y ) )
97, 8simplbiim 659 . . . 4  |-  ( z  e.  { x  e.  B  |  C  =  y }  ->  (
y  e.  A  ->  [_ z  /  x ]_ C  =  y
) )
109impcom 446 . . 3  |-  ( ( y  e.  A  /\  z  e.  { x  e.  B  |  C  =  y } )  ->  [_ z  /  x ]_ C  =  y
)
1110rgen2 2975 . 2  |-  A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y
12 invdisj 4638 . 2  |-  ( A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y  -> Disj  y  e.  A  { x  e.  B  |  C  =  y } )
1311, 12ax-mp 5 1  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   [_csb 3533  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-disj 4621
This theorem is referenced by:  disjxwrd  13455  disjwrdpfx  41408
  Copyright terms: Public domain W3C validator