| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota2df | Structured version Visualization version Unicode version | ||
| Description: A condition that allows
us to represent "the unique element such that
|
| Ref | Expression |
|---|---|
| iota2df.1 |
|
| iota2df.2 |
|
| iota2df.3 |
|
| iota2df.4 |
|
| iota2df.5 |
|
| iota2df.6 |
|
| Ref | Expression |
|---|---|
| iota2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 |
. 2
| |
| 2 | iota2df.3 |
. . 3
| |
| 3 | simpr 477 |
. . . 4
| |
| 4 | 3 | eqeq2d 2632 |
. . 3
|
| 5 | 2, 4 | bibi12d 335 |
. 2
|
| 6 | iota2df.2 |
. . 3
| |
| 7 | iota1 5865 |
. . 3
| |
| 8 | 6, 7 | syl 17 |
. 2
|
| 9 | iota2df.4 |
. 2
| |
| 10 | iota2df.6 |
. 2
| |
| 11 | iota2df.5 |
. . 3
| |
| 12 | nfiota1 5853 |
. . . . 5
| |
| 13 | 12 | a1i 11 |
. . . 4
|
| 14 | 13, 10 | nfeqd 2772 |
. . 3
|
| 15 | 11, 14 | nfbid 1832 |
. 2
|
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 3256 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iota2d 5876 iota2 5877 riota2df 6631 opiota 7229 |
| Copyright terms: Public domain | W3C validator |