| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota2 | Structured version Visualization version Unicode version | ||
| Description: The unique element such
that |
| Ref | Expression |
|---|---|
| iota2.1 |
|
| Ref | Expression |
|---|---|
| iota2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | simpl 473 |
. . 3
| |
| 3 | simpr 477 |
. . 3
| |
| 4 | iota2.1 |
. . . 4
| |
| 5 | 4 | adantl 482 |
. . 3
|
| 6 | nfv 1843 |
. . . 4
| |
| 7 | nfeu1 2480 |
. . . 4
| |
| 8 | 6, 7 | nfan 1828 |
. . 3
|
| 9 | nfvd 1844 |
. . 3
| |
| 10 | nfcvd 2765 |
. . 3
| |
| 11 | 2, 3, 5, 8, 9, 10 | iota2df 5875 |
. 2
|
| 12 | 1, 11 | sylan 488 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: pczpre 15552 pcdiv 15557 rngurd 29788 nosupno 31849 nosupfv 31852 bj-nuliota 33019 unirep 33507 ellimciota 39846 |
| Copyright terms: Public domain | W3C validator |