MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep2 Structured version   Visualization version   Unicode version

Theorem isarep2 5978
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5976. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1  |-  A  e. 
_V
isarep2.2  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
Assertion
Ref Expression
isarep2  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Distinct variable groups:    x, w, y, A    y, z    ph, w    ph, z
Allowed substitution hints:    ph( x, y)    A( z)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 5431 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ph } " A )
2 resopab 5446 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
32imaeq1i 5463 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)
41, 3eqtr3i 2646 . . 3  |-  ( {
<. x ,  y >.  |  ph } " A
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )
5 funopab 5923 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
6 isarep2.2 . . . . . . . 8  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
76rspec 2931 . . . . . . 7  |-  ( x  e.  A  ->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
8 nfv 1843 . . . . . . . 8  |-  F/ z
ph
98mo3 2507 . . . . . . 7  |-  ( E* y ph  <->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
107, 9sylibr 224 . . . . . 6  |-  ( x  e.  A  ->  E* y ph )
11 moanimv 2531 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
1210, 11mpbir 221 . . . . 5  |-  E* y
( x  e.  A  /\  ph )
135, 12mpgbir 1726 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
14 isarep2.1 . . . . 5  |-  A  e. 
_V
1514funimaex 5976 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)  e.  _V )
1613, 15ax-mp 5 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )  e. 
_V
174, 16eqeltri 2697 . 2  |-  ( {
<. x ,  y >.  |  ph } " A
)  e.  _V
1817isseti 3209 1  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   [wsb 1880    e. wcel 1990   E*wmo 2471   A.wral 2912   _Vcvv 3200   {copab 4712    |` cres 5116   "cima 5117   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator