| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isatl | Structured version Visualization version Unicode version | ||
| Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| isatlat.b |
|
| isatlat.g |
|
| isatlat.l |
|
| isatlat.z |
|
| isatlat.a |
|
| Ref | Expression |
|---|---|
| isatl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . 6
| |
| 2 | isatlat.b |
. . . . . 6
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . 5
|
| 4 | fveq2 6191 |
. . . . . . 7
| |
| 5 | isatlat.g |
. . . . . . 7
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . 6
|
| 7 | 6 | dmeqd 5326 |
. . . . 5
|
| 8 | 3, 7 | eleq12d 2695 |
. . . 4
|
| 9 | fveq2 6191 |
. . . . . . . 8
| |
| 10 | isatlat.z |
. . . . . . . 8
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . 7
|
| 12 | 11 | neeq2d 2854 |
. . . . . 6
|
| 13 | fveq2 6191 |
. . . . . . . 8
| |
| 14 | isatlat.a |
. . . . . . . 8
| |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . 7
|
| 16 | fveq2 6191 |
. . . . . . . . 9
| |
| 17 | isatlat.l |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl6eqr 2674 |
. . . . . . . 8
|
| 19 | 18 | breqd 4664 |
. . . . . . 7
|
| 20 | 15, 19 | rexeqbidv 3153 |
. . . . . 6
|
| 21 | 12, 20 | imbi12d 334 |
. . . . 5
|
| 22 | 3, 21 | raleqbidv 3152 |
. . . 4
|
| 23 | 8, 22 | anbi12d 747 |
. . 3
|
| 24 | df-atl 34585 |
. . 3
| |
| 25 | 23, 24 | elrab2 3366 |
. 2
|
| 26 | 3anass 1042 |
. 2
| |
| 27 | 25, 26 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-atl 34585 |
| This theorem is referenced by: atllat 34587 atl0dm 34589 atlex 34603 |
| Copyright terms: Public domain | W3C validator |