Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   Unicode version

Theorem atlex 34603
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 29219 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b  |-  B  =  ( Base `  K
)
atlex.l  |-  .<_  =  ( le `  K )
atlex.z  |-  .0.  =  ( 0. `  K )
atlex.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlex  |-  ( ( K  e.  AtLat  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  E. y  e.  A  y  .<_  X )
Distinct variable groups:    y, A    y, K    y, X
Allowed substitution hints:    B( y)    .<_ ( y)    .0. ( y)

Proof of Theorem atlex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5  |-  B  =  ( Base `  K
)
2 eqid 2622 . . . . 5  |-  ( glb `  K )  =  ( glb `  K )
3 atlex.l . . . . 5  |-  .<_  =  ( le `  K )
4 atlex.z . . . . 5  |-  .0.  =  ( 0. `  K )
5 atlex.a . . . . 5  |-  A  =  ( Atoms `  K )
61, 2, 3, 4, 5isatl 34586 . . . 4  |-  ( K  e.  AtLat 
<->  ( K  e.  Lat  /\  B  e.  dom  ( glb `  K )  /\  A. x  e.  B  ( x  =/=  .0.  ->  E. y  e.  A  y 
.<_  x ) ) )
76simp3bi 1078 . . 3  |-  ( K  e.  AtLat  ->  A. x  e.  B  ( x  =/=  .0.  ->  E. y  e.  A  y  .<_  x ) )
8 neeq1 2856 . . . . 5  |-  ( x  =  X  ->  (
x  =/=  .0.  <->  X  =/=  .0.  ) )
9 breq2 4657 . . . . . 6  |-  ( x  =  X  ->  (
y  .<_  x  <->  y  .<_  X ) )
109rexbidv 3052 . . . . 5  |-  ( x  =  X  ->  ( E. y  e.  A  y  .<_  x  <->  E. y  e.  A  y  .<_  X ) )
118, 10imbi12d 334 . . . 4  |-  ( x  =  X  ->  (
( x  =/=  .0.  ->  E. y  e.  A  y  .<_  x )  <->  ( X  =/=  .0.  ->  E. y  e.  A  y  .<_  X ) ) )
1211rspccv 3306 . . 3  |-  ( A. x  e.  B  (
x  =/=  .0.  ->  E. y  e.  A  y 
.<_  x )  ->  ( X  e.  B  ->  ( X  =/=  .0.  ->  E. y  e.  A  y 
.<_  X ) ) )
137, 12syl 17 . 2  |-  ( K  e.  AtLat  ->  ( X  e.  B  ->  ( X  =/=  .0.  ->  E. y  e.  A  y  .<_  X ) ) )
14133imp 1256 1  |-  ( ( K  e.  AtLat  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  E. y  e.  A  y  .<_  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653   dom cdm 5114   ` cfv 5888   Basecbs 15857   lecple 15948   glbcglb 16943   0.cp0 17037   Latclat 17045   Atomscatm 34550   AtLatcal 34551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-atl 34585
This theorem is referenced by:  atnle  34604  atlatmstc  34606  cvratlem  34707  cvrat4  34729  2llnmat  34810  2lnat  35070
  Copyright terms: Public domain W3C validator