MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connclo Structured version   Visualization version   Unicode version

Theorem connclo 21218
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
isconn.1  |-  X  = 
U. J
connclo.1  |-  ( ph  ->  J  e. Conn )
connclo.2  |-  ( ph  ->  A  e.  J )
connclo.3  |-  ( ph  ->  A  =/=  (/) )
connclo.4  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
Assertion
Ref Expression
connclo  |-  ( ph  ->  A  =  X )

Proof of Theorem connclo
StepHypRef Expression
1 connclo.3 . . 3  |-  ( ph  ->  A  =/=  (/) )
21neneqd 2799 . 2  |-  ( ph  ->  -.  A  =  (/) )
3 connclo.2 . . . . . 6  |-  ( ph  ->  A  e.  J )
4 connclo.4 . . . . . 6  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
53, 4elind 3798 . . . . 5  |-  ( ph  ->  A  e.  ( J  i^i  ( Clsd `  J
) ) )
6 connclo.1 . . . . . 6  |-  ( ph  ->  J  e. Conn )
7 isconn.1 . . . . . . . 8  |-  X  = 
U. J
87isconn 21216 . . . . . . 7  |-  ( J  e. Conn 
<->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J ) )  =  { (/) ,  X } ) )
98simprbi 480 . . . . . 6  |-  ( J  e. Conn  ->  ( J  i^i  ( Clsd `  J )
)  =  { (/) ,  X } )
106, 9syl 17 . . . . 5  |-  ( ph  ->  ( J  i^i  ( Clsd `  J ) )  =  { (/) ,  X } )
115, 10eleqtrd 2703 . . . 4  |-  ( ph  ->  A  e.  { (/) ,  X } )
12 elpri 4197 . . . 4  |-  ( A  e.  { (/) ,  X }  ->  ( A  =  (/)  \/  A  =  X ) )
1311, 12syl 17 . . 3  |-  ( ph  ->  ( A  =  (/)  \/  A  =  X ) )
1413ord 392 . 2  |-  ( ph  ->  ( -.  A  =  (/)  ->  A  =  X ) )
152, 14mpd 15 1  |-  ( ph  ->  A  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915   {cpr 4179   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-conn 21215
This theorem is referenced by:  conndisj  21219  cnconn  21225  connsubclo  21227  t1connperf  21239  txconn  21492  connpconn  31217  cvmliftmolem2  31264  cvmlift2lem12  31296  mblfinlem1  33446
  Copyright terms: Public domain W3C validator