| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conndisj | Structured version Visualization version Unicode version | ||
| Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| isconn.1 |
|
| connclo.1 |
|
| connclo.2 |
|
| connclo.3 |
|
| conndisj.4 |
|
| conndisj.5 |
|
| conndisj.6 |
|
| Ref | Expression |
|---|---|
| conndisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connclo.3 |
. 2
| |
| 2 | connclo.2 |
. . . . . . 7
| |
| 3 | elssuni 4467 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 17 |
. . . . . 6
|
| 5 | isconn.1 |
. . . . . 6
| |
| 6 | 4, 5 | syl6sseqr 3652 |
. . . . 5
|
| 7 | conndisj.6 |
. . . . 5
| |
| 8 | uneqdifeq 4057 |
. . . . 5
| |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . 4
|
| 10 | simpr 477 |
. . . . . . 7
| |
| 11 | 10 | difeq2d 3728 |
. . . . . 6
|
| 12 | dfss4 3858 |
. . . . . . . 8
| |
| 13 | 6, 12 | sylib 208 |
. . . . . . 7
|
| 14 | 13 | adantr 481 |
. . . . . 6
|
| 15 | connclo.1 |
. . . . . . . . . 10
| |
| 16 | 15 | adantr 481 |
. . . . . . . . 9
|
| 17 | conndisj.4 |
. . . . . . . . . 10
| |
| 18 | 17 | adantr 481 |
. . . . . . . . 9
|
| 19 | conndisj.5 |
. . . . . . . . . 10
| |
| 20 | 19 | adantr 481 |
. . . . . . . . 9
|
| 21 | 5 | isconn 21216 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | simplbi 476 |
. . . . . . . . . . . . 13
|
| 23 | 15, 22 | syl 17 |
. . . . . . . . . . . 12
|
| 24 | 5 | opncld 20837 |
. . . . . . . . . . . 12
|
| 25 | 23, 2, 24 | syl2anc 693 |
. . . . . . . . . . 11
|
| 26 | 25 | adantr 481 |
. . . . . . . . . 10
|
| 27 | 10, 26 | eqeltrrd 2702 |
. . . . . . . . 9
|
| 28 | 5, 16, 18, 20, 27 | connclo 21218 |
. . . . . . . 8
|
| 29 | 28 | difeq2d 3728 |
. . . . . . 7
|
| 30 | difid 3948 |
. . . . . . 7
| |
| 31 | 29, 30 | syl6eq 2672 |
. . . . . 6
|
| 32 | 11, 14, 31 | 3eqtr3d 2664 |
. . . . 5
|
| 33 | 32 | ex 450 |
. . . 4
|
| 34 | 9, 33 | sylbid 230 |
. . 3
|
| 35 | 34 | necon3d 2815 |
. 2
|
| 36 | 1, 35 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-top 20699 df-cld 20823 df-conn 21215 |
| This theorem is referenced by: dfconn2 21222 |
| Copyright terms: Public domain | W3C validator |