MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conndisj Structured version   Visualization version   Unicode version

Theorem conndisj 21219
Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
isconn.1  |-  X  = 
U. J
connclo.1  |-  ( ph  ->  J  e. Conn )
connclo.2  |-  ( ph  ->  A  e.  J )
connclo.3  |-  ( ph  ->  A  =/=  (/) )
conndisj.4  |-  ( ph  ->  B  e.  J )
conndisj.5  |-  ( ph  ->  B  =/=  (/) )
conndisj.6  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
Assertion
Ref Expression
conndisj  |-  ( ph  ->  ( A  u.  B
)  =/=  X )

Proof of Theorem conndisj
StepHypRef Expression
1 connclo.3 . 2  |-  ( ph  ->  A  =/=  (/) )
2 connclo.2 . . . . . . 7  |-  ( ph  ->  A  e.  J )
3 elssuni 4467 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
42, 3syl 17 . . . . . 6  |-  ( ph  ->  A  C_  U. J )
5 isconn.1 . . . . . 6  |-  X  = 
U. J
64, 5syl6sseqr 3652 . . . . 5  |-  ( ph  ->  A  C_  X )
7 conndisj.6 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
8 uneqdifeq 4057 . . . . 5  |-  ( ( A  C_  X  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  u.  B
)  =  X  <->  ( X  \  A )  =  B ) )
96, 7, 8syl2anc 693 . . . 4  |-  ( ph  ->  ( ( A  u.  B )  =  X  <-> 
( X  \  A
)  =  B ) )
10 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  A )  =  B )
1110difeq2d 3728 . . . . . 6  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  ( X  \  A
) )  =  ( X  \  B ) )
12 dfss4 3858 . . . . . . . 8  |-  ( A 
C_  X  <->  ( X  \  ( X  \  A
) )  =  A )
136, 12sylib 208 . . . . . . 7  |-  ( ph  ->  ( X  \  ( X  \  A ) )  =  A )
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  ( X  \  A
) )  =  A )
15 connclo.1 . . . . . . . . . 10  |-  ( ph  ->  J  e. Conn )
1615adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  J  e. Conn )
17 conndisj.4 . . . . . . . . . 10  |-  ( ph  ->  B  e.  J )
1817adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  B  e.  J )
19 conndisj.5 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  (/) )
2019adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  B  =/=  (/) )
215isconn 21216 . . . . . . . . . . . . . 14  |-  ( J  e. Conn 
<->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J ) )  =  { (/) ,  X } ) )
2221simplbi 476 . . . . . . . . . . . . 13  |-  ( J  e. Conn  ->  J  e.  Top )
2315, 22syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
245opncld 20837 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( X  \  A
)  e.  ( Clsd `  J ) )
2523, 2, 24syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( X  \  A
)  e.  ( Clsd `  J ) )
2625adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  A )  e.  (
Clsd `  J )
)
2710, 26eqeltrrd 2702 . . . . . . . . 9  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  B  e.  ( Clsd `  J )
)
285, 16, 18, 20, 27connclo 21218 . . . . . . . 8  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  B  =  X )
2928difeq2d 3728 . . . . . . 7  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  B )  =  ( X  \  X ) )
30 difid 3948 . . . . . . 7  |-  ( X 
\  X )  =  (/)
3129, 30syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  ( X  \  B )  =  (/) )
3211, 14, 313eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  ( X  \  A )  =  B )  ->  A  =  (/) )
3332ex 450 . . . 4  |-  ( ph  ->  ( ( X  \  A )  =  B  ->  A  =  (/) ) )
349, 33sylbid 230 . . 3  |-  ( ph  ->  ( ( A  u.  B )  =  X  ->  A  =  (/) ) )
3534necon3d 2815 . 2  |-  ( ph  ->  ( A  =/=  (/)  ->  ( A  u.  B )  =/=  X ) )
361, 35mpd 15 1  |-  ( ph  ->  ( A  u.  B
)  =/=  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {cpr 4179   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-cld 20823  df-conn 21215
This theorem is referenced by:  dfconn2  21222
  Copyright terms: Public domain W3C validator