Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesodd Structured version   Visualization version   Unicode version

Theorem nnsum4primesodd 41684
Description: If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.)
Assertion
Ref Expression
nnsum4primesodd  |-  ( A. m  e. Odd  ( 5  <  m  ->  m  e. GoldbachOddW  )  ->  ( ( N  e.  ( ZZ>= `  6
)  /\  N  e. Odd  )  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
Distinct variable group:    f, N, k, m

Proof of Theorem nnsum4primesodd
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . 6  |-  ( m  =  N  ->  (
5  <  m  <->  5  <  N ) )
2 eleq1 2689 . . . . . 6  |-  ( m  =  N  ->  (
m  e. GoldbachOddW  <->  N  e. GoldbachOddW  ) )
31, 2imbi12d 334 . . . . 5  |-  ( m  =  N  ->  (
( 5  <  m  ->  m  e. GoldbachOddW  )  <->  ( 5  <  N  ->  N  e. GoldbachOddW  ) ) )
43rspcv 3305 . . . 4  |-  ( N  e. Odd  ->  ( A. m  e. Odd  ( 5  <  m  ->  m  e. GoldbachOddW  )  ->  (
5  <  N  ->  N  e. GoldbachOddW  ) ) )
54adantl 482 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
6 )  /\  N  e. Odd  )  ->  ( A. m  e. Odd  ( 5  <  m  ->  m  e. GoldbachOddW  )  ->  ( 5  < 
N  ->  N  e. GoldbachOddW  ) ) )
6 eluz2 11693 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
7 5lt6 11204 . . . . . . . . 9  |-  5  <  6
8 5re 11099 . . . . . . . . . . 11  |-  5  e.  RR
98a1i 11 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  5  e.  RR )
10 6re 11101 . . . . . . . . . . 11  |-  6  e.  RR
1110a1i 11 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  6  e.  RR )
12 zre 11381 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  RR )
13 ltletr 10129 . . . . . . . . . 10  |-  ( ( 5  e.  RR  /\  6  e.  RR  /\  N  e.  RR )  ->  (
( 5  <  6  /\  6  <_  N )  ->  5  <  N
) )
149, 11, 12, 13syl3anc 1326 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 5  <  6  /\  6  <_  N )  ->  5  <  N
) )
157, 14mpani 712 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
6  <_  N  ->  5  <  N ) )
1615imp 445 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
5  <  N )
17163adant1 1079 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  5  <  N )
186, 17sylbi 207 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  5  <  N )
1918adantr 481 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
6 )  /\  N  e. Odd  )  ->  5  <  N )
20 pm2.27 42 . . . 4  |-  ( 5  <  N  ->  (
( 5  <  N  ->  N  e. GoldbachOddW  )  ->  N  e. GoldbachOddW  ) )
2119, 20syl 17 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
6 )  /\  N  e. Odd  )  ->  ( (
5  <  N  ->  N  e. GoldbachOddW  )  ->  N  e. GoldbachOddW  ) )
22 isgbow 41640 . . . . 5  |-  ( N  e. GoldbachOddW 
<->  ( N  e. Odd  /\  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
23 1ex 10035 . . . . . . . . . . . . . . 15  |-  1  e.  _V
24 2ex 11092 . . . . . . . . . . . . . . 15  |-  2  e.  _V
25 3ex 11096 . . . . . . . . . . . . . . 15  |-  3  e.  _V
26 vex 3203 . . . . . . . . . . . . . . 15  |-  p  e. 
_V
27 vex 3203 . . . . . . . . . . . . . . 15  |-  q  e. 
_V
28 vex 3203 . . . . . . . . . . . . . . 15  |-  r  e. 
_V
29 1ne2 11240 . . . . . . . . . . . . . . 15  |-  1  =/=  2
30 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
31 1lt3 11196 . . . . . . . . . . . . . . . 16  |-  1  <  3
3230, 31ltneii 10150 . . . . . . . . . . . . . . 15  |-  1  =/=  3
33 2re 11090 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
34 2lt3 11195 . . . . . . . . . . . . . . . 16  |-  2  <  3
3533, 34ltneii 10150 . . . . . . . . . . . . . . 15  |-  2  =/=  3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 6424 . . . . . . . . . . . . . 14  |-  { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } : {
1 ,  2 ,  3 } --> { p ,  q ,  r }
3736a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. } : { 1 ,  2 ,  3 } --> { p ,  q ,  r } )
38 1p2e3 11152 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  2 )  =  3
3938eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  3  =  ( 1  +  2 )
4039oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( 1 ... 3 )  =  ( 1 ... (
1  +  2 ) )
41 1z 11407 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
42 fztp 12397 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
4341, 42ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
44 eqid 2622 . . . . . . . . . . . . . . . 16  |-  1  =  1
45 id 22 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  1  ->  1  =  1 )
46 1p1e2 11134 . . . . . . . . . . . . . . . . . 18  |-  ( 1  +  1 )  =  2
4746a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  1  ->  (
1  +  1 )  =  2 )
4838a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  1  ->  (
1  +  2 )  =  3 )
4945, 47, 48tpeq123d 4283 . . . . . . . . . . . . . . . 16  |-  ( 1  =  1  ->  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 } )
5044, 49ax-mp 5 . . . . . . . . . . . . . . 15  |-  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 }
5140, 43, 503eqtri 2648 . . . . . . . . . . . . . 14  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
5251feq2i 6037 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } : ( 1 ... 3 ) --> { p ,  q ,  r }  <->  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. } : { 1 ,  2 ,  3 } --> { p ,  q ,  r } )
5337, 52sylibr 224 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. } : ( 1 ... 3 ) --> { p ,  q ,  r } )
54 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime )  <->  ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime ) )
5526, 27, 28tpss 4368 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime )  <->  { p ,  q ,  r }  C_  Prime )
5654, 55sylbb1 227 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  { p ,  q ,  r } 
C_  Prime )
5753, 56fssd 6057 . . . . . . . . . . 11  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. } : ( 1 ... 3 ) --> Prime )
58 prmex 15391 . . . . . . . . . . . . 13  |-  Prime  e.  _V
59 ovex 6678 . . . . . . . . . . . . 13  |-  ( 1 ... 3 )  e. 
_V
6058, 59pm3.2i 471 . . . . . . . . . . . 12  |-  ( Prime  e.  _V  /\  ( 1 ... 3 )  e. 
_V )
61 elmapg 7870 . . . . . . . . . . . 12  |-  ( ( Prime  e.  _V  /\  ( 1 ... 3
)  e.  _V )  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. }  e.  ( Prime  ^m  (
1 ... 3 ) )  <->  { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } : ( 1 ... 3 ) --> Prime ) )
6260, 61mp1i 13 . . . . . . . . . . 11  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. }  e.  ( Prime  ^m  ( 1 ... 3 ) )  <->  { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } : ( 1 ... 3 ) --> Prime ) )
6357, 62mpbird 247 . . . . . . . . . 10  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. }  e.  ( Prime  ^m  (
1 ... 3 ) ) )
64 fveq1 6190 . . . . . . . . . . . . 13  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. }  ->  ( f `  k )  =  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) )
6564sumeq2sdv 14435 . . . . . . . . . . . 12  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. }  ->  sum_ k  e.  ( 1 ... 3 ) ( f `  k
)  =  sum_ k  e.  ( 1 ... 3
) ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) )
6665eqeq2d 2632 . . . . . . . . . . 11  |-  ( f  =  { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. }  ->  ( ( ( p  +  q )  +  r )  = 
sum_ k  e.  ( 1 ... 3 ) ( f `  k
)  <->  ( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3 ) ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) ) )
6766adantl 482 . . . . . . . . . 10  |-  ( ( ( ( p  e. 
Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  /\  f  =  { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } )  -> 
( ( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3 ) ( f `  k )  <-> 
( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3
) ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) ) )
6851a1i 11 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( 1 ... 3 )  =  {
1 ,  2 ,  3 } )
6968sumeq1d 14431 . . . . . . . . . . 11  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  sum_ k  e.  ( 1 ... 3 ) ( { <. 1 ,  p >. ,  <. 2 ,  q >. ,  <. 3 ,  r >. } `
 k )  = 
sum_ k  e.  {
1 ,  2 ,  3 }  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) )
70 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  1
) )
7123, 26fvtp1 6460 . . . . . . . . . . . . . 14  |-  ( ( 1  =/=  2  /\  1  =/=  3 )  ->  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } `  1
)  =  p )
7229, 32, 71mp2an 708 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  1
)  =  p
7370, 72syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  1  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  p )
74 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  2
) )
7524, 27fvtp2 6461 . . . . . . . . . . . . . 14  |-  ( ( 1  =/=  2  /\  2  =/=  3 )  ->  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } `  2
)  =  q )
7629, 35, 75mp2an 708 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  2
)  =  q
7774, 76syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  2  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  q )
78 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  3  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  3
) )
7925, 28fvtp3 6462 . . . . . . . . . . . . . 14  |-  ( ( 1  =/=  3  /\  2  =/=  3 )  ->  ( { <. 1 ,  p >. , 
<. 2 ,  q
>. ,  <. 3 ,  r >. } `  3
)  =  r )
8032, 35, 79mp2an 708 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  3
)  =  r
8178, 80syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  3  ->  ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  r )
82 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
8382zcnd 11483 . . . . . . . . . . . . . 14  |-  ( p  e.  Prime  ->  p  e.  CC )
84 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( q  e.  Prime  ->  q  e.  ZZ )
8584zcnd 11483 . . . . . . . . . . . . . 14  |-  ( q  e.  Prime  ->  q  e.  CC )
86 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( r  e.  Prime  ->  r  e.  ZZ )
8786zcnd 11483 . . . . . . . . . . . . . 14  |-  ( r  e.  Prime  ->  r  e.  CC )
8883, 85, 873anim123i 1247 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  q  e.  Prime  /\  r  e.  Prime )  ->  ( p  e.  CC  /\  q  e.  CC  /\  r  e.  CC ) )
89883expa 1265 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( p  e.  CC  /\  q  e.  CC  /\  r  e.  CC ) )
90 2z 11409 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
91 3z 11410 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
9241, 90, 913pm3.2i 1239 . . . . . . . . . . . . 13  |-  ( 1  e.  ZZ  /\  2  e.  ZZ  /\  3  e.  ZZ )
9392a1i 11 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( 1  e.  ZZ  /\  2  e.  ZZ  /\  3  e.  ZZ ) )
9429a1i 11 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  1  =/=  2
)
9532a1i 11 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  1  =/=  3
)
9635a1i 11 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  2  =/=  3
)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 14478 . . . . . . . . . . 11  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  sum_ k  e.  {
1 ,  2 ,  3 }  ( {
<. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
)  =  ( ( p  +  q )  +  r ) )
9869, 97eqtr2d 2657 . . . . . . . . . 10  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3 ) ( { <. 1 ,  p >. ,  <. 2 ,  q
>. ,  <. 3 ,  r >. } `  k
) )
9963, 67, 98rspcedvd 3317 . . . . . . . . 9  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) ( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) )
100 eqeq1 2626 . . . . . . . . . 10  |-  ( N  =  ( ( p  +  q )  +  r )  ->  ( N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k )  <->  ( (
p  +  q )  +  r )  = 
sum_ k  e.  ( 1 ... 3 ) ( f `  k
) ) )
101100rexbidv 3052 . . . . . . . . 9  |-  ( N  =  ( ( p  +  q )  +  r )  ->  ( E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3 ) ( f `  k
)  <->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) ( ( p  +  q )  +  r )  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
10299, 101syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  q  e.  Prime )  /\  r  e.  Prime )  ->  ( N  =  ( ( p  +  q )  +  r )  ->  E. f  e.  ( Prime  ^m  (
1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
103102rexlimdva 3031 . . . . . . 7  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  ( E. r  e.  Prime  N  =  ( ( p  +  q )  +  r )  ->  E. f  e.  ( Prime  ^m  (
1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
104103rexlimivv 3036 . . . . . 6  |-  ( E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r )  ->  E. f  e.  ( Prime  ^m  (
1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) )
105104adantl 482 . . . . 5  |-  ( ( N  e. Odd  /\  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) )  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3 ) ( f `  k
) )
10622, 105sylbi 207 . . . 4  |-  ( N  e. GoldbachOddW  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) )
107106a1i 11 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
6 )  /\  N  e. Odd  )  ->  ( N  e. GoldbachOddW 
->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
1085, 21, 1073syld 60 . 2  |-  ( ( N  e.  ( ZZ>= ` 
6 )  /\  N  e. Odd  )  ->  ( A. m  e. Odd  ( 5  <  m  ->  m  e. GoldbachOddW  )  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
109108com12 32 1  |-  ( A. m  e. Odd  ( 5  <  m  ->  m  e. GoldbachOddW  )  ->  ( ( N  e.  ( ZZ>= `  6
)  /\  N  e. Odd  )  ->  E. f  e.  ( Prime  ^m  ( 1 ... 3 ) ) N  =  sum_ k  e.  ( 1 ... 3
) ( f `  k ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {ctp 4181   <.cop 4183   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   3c3 11071   5c5 11073   6c6 11074   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   sum_csu 14416   Primecprime 15385   Odd codd 41538   GoldbachOddW cgbow 41634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prm 15386  df-gbow 41637
This theorem is referenced by:  nnsum4primeseven  41688  wtgoldbnnsum4prm  41690  bgoldbnnsum3prm  41692
  Copyright terms: Public domain W3C validator