| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version Unicode version | ||
| Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| isngp.n |
|
| isngp.z |
|
| isngp.d |
|
| Ref | Expression |
|---|---|
| isngp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3796 |
. . 3
| |
| 2 | 1 | anbi1i 731 |
. 2
|
| 3 | fveq2 6191 |
. . . . . 6
| |
| 4 | isngp.n |
. . . . . 6
| |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . 5
|
| 6 | fveq2 6191 |
. . . . . 6
| |
| 7 | isngp.z |
. . . . . 6
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . 5
|
| 9 | 5, 8 | coeq12d 5286 |
. . . 4
|
| 10 | fveq2 6191 |
. . . . 5
| |
| 11 | isngp.d |
. . . . 5
| |
| 12 | 10, 11 | syl6eqr 2674 |
. . . 4
|
| 13 | 9, 12 | sseq12d 3634 |
. . 3
|
| 14 | df-ngp 22388 |
. . 3
| |
| 15 | 13, 14 | elrab2 3366 |
. 2
|
| 16 | df-3an 1039 |
. 2
| |
| 17 | 2, 15, 16 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-co 5123 df-iota 5851 df-fv 5896 df-ngp 22388 |
| This theorem is referenced by: isngp2 22401 ngpgrp 22403 ngpms 22404 tngngp2 22456 cnngp 22583 zhmnrg 30011 |
| Copyright terms: Public domain | W3C validator |