MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Structured version   Visualization version   Unicode version

Theorem tngngp2 22456
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t  |-  T  =  ( G toNrmGrp  N )
tngngp2.x  |-  X  =  ( Base `  G
)
tngngp2.d  |-  D  =  ( dist `  T
)
Assertion
Ref Expression
tngngp2  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )

Proof of Theorem tngngp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 22403 . . . . 5  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
2 tngngp2.x . . . . . . . 8  |-  X  =  ( Base `  G
)
3 fvex 6201 . . . . . . . 8  |-  ( Base `  G )  e.  _V
42, 3eqeltri 2697 . . . . . . 7  |-  X  e. 
_V
5 reex 10027 . . . . . . 7  |-  RR  e.  _V
6 fex2 7121 . . . . . . 7  |-  ( ( N : X --> RR  /\  X  e.  _V  /\  RR  e.  _V )  ->  N  e.  _V )
74, 5, 6mp3an23 1416 . . . . . 6  |-  ( N : X --> RR  ->  N  e.  _V )
82a1i 11 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  G
) )
9 tngngp2.t . . . . . . . 8  |-  T  =  ( G toNrmGrp  N )
109, 2tngbas 22445 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
11 eqid 2622 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
129, 11tngplusg 22446 . . . . . . . 8  |-  ( N  e.  _V  ->  ( +g  `  G )  =  ( +g  `  T
) )
1312oveqdr 6674 . . . . . . 7  |-  ( ( N  e.  _V  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  T ) y ) )
148, 10, 13grppropd 17437 . . . . . 6  |-  ( N  e.  _V  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
157, 14syl 17 . . . . 5  |-  ( N : X --> RR  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
161, 15syl5ibr 236 . . . 4  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  ->  G  e. 
Grp ) )
1716imp 445 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  G  e.  Grp )
18 ngpms 22404 . . . . . 6  |-  ( T  e. NrmGrp  ->  T  e.  MetSp )
1918adantl 482 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  T  e.  MetSp )
20 eqid 2622 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
21 tngngp2.d . . . . . 6  |-  D  =  ( dist `  T
)
2220, 21msmet2 22265 . . . . 5  |-  ( T  e.  MetSp  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
2319, 22syl 17 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( ( Base `  T )  X.  ( Base `  T
) ) )  e.  ( Met `  ( Base `  T ) ) )
24 eqid 2622 . . . . . . . . . 10  |-  ( -g `  G )  =  (
-g `  G )
252, 24grpsubf 17494 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( X  X.  X
) --> X )
2617, 25syl 17 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  (
-g `  G ) : ( X  X.  X ) --> X )
27 fco 6058 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( -g `  G ) : ( X  X.  X ) --> X )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X ) --> RR )
2826, 27syldan 487 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR )
297adantr 481 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  N  e.  _V )
309, 24tngds 22452 . . . . . . . . . 10  |-  ( N  e.  _V  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3129, 30syl 17 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3231, 21syl6reqr 2675 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( N  o.  ( -g `  G ) ) )
3332feq1d 6030 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D : ( X  X.  X ) --> RR  <->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR ) )
3428, 33mpbird 247 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D : ( X  X.  X ) --> RR )
35 ffn 6045 . . . . . 6  |-  ( D : ( X  X.  X ) --> RR  ->  D  Fn  ( X  X.  X ) )
36 fnresdm 6000 . . . . . 6  |-  ( D  Fn  ( X  X.  X )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3734, 35, 363syl 18 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3829, 10syl 17 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  X  =  ( Base `  T
) )
3938sqxpeqd 5141 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( X  X.  X )  =  ( ( Base `  T )  X.  ( Base `  T ) ) )
4039reseq2d 5396 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  ( D  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) )
4137, 40eqtr3d 2658 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) )
4238fveq2d 6195 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( Met `  X )  =  ( Met `  ( Base `  T ) ) )
4323, 41, 423eltr4d 2716 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  e.  ( Met `  X
) )
4417, 43jca 554 . 2  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )
4515biimpa 501 . . . 4  |-  ( ( N : X --> RR  /\  G  e.  Grp )  ->  T  e.  Grp )
4645adantrr 753 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  Grp )
47 simprr 796 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  X ) )
487adantr 481 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  e.  _V )
4948, 10syl 17 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  X  =  (
Base `  T )
)
5049fveq2d 6195 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( Met `  X
)  =  ( Met `  ( Base `  T
) ) )
5147, 50eleqtrd 2703 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  ( Base `  T ) ) )
52 metf 22135 . . . . . . 7  |-  ( D  e.  ( Met `  ( Base `  T ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
5351, 52syl 17 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
54 ffn 6045 . . . . . 6  |-  ( D : ( ( Base `  T )  X.  ( Base `  T ) ) --> RR  ->  D  Fn  ( ( Base `  T
)  X.  ( Base `  T ) ) )
55 fnresdm 6000 . . . . . 6  |-  ( D  Fn  ( ( Base `  T )  X.  ( Base `  T ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5653, 54, 553syl 18 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5756, 51eqeltrd 2701 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
5856fveq2d 6195 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  ( D  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) )  =  (
MetOpen `  D ) )
59 simprl 794 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  G  e.  Grp )
60 eqid 2622 . . . . . . 7  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
619, 21, 60tngtopn 22454 . . . . . 6  |-  ( ( G  e.  Grp  /\  N  e.  _V )  ->  ( MetOpen `  D )  =  ( TopOpen `  T
) )
6259, 48, 61syl2anc 693 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  D
)  =  ( TopOpen `  T ) )
6358, 62eqtr2d 2657 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) )
64 eqid 2622 . . . . 5  |-  ( TopOpen `  T )  =  (
TopOpen `  T )
6521reseq1i 5392 . . . . 5  |-  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) )
6664, 20, 65isms2 22255 . . . 4  |-  ( T  e.  MetSp 
<->  ( ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) )  /\  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) ) )
6757, 63, 66sylanbrc 698 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  MetSp )
68 simpl 473 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N : X --> RR )
699, 2, 5tngnm 22455 . . . . . . 7  |-  ( ( G  e.  Grp  /\  N : X --> RR )  ->  N  =  (
norm `  T )
)
7059, 68, 69syl2anc 693 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  =  (
norm `  T )
)
718, 10eqtr3d 2658 . . . . . . . 8  |-  ( N  e.  _V  ->  ( Base `  G )  =  ( Base `  T
) )
7271, 12grpsubpropd 17520 . . . . . . 7  |-  ( N  e.  _V  ->  ( -g `  G )  =  ( -g `  T
) )
7348, 72syl 17 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( -g `  G
)  =  ( -g `  T ) )
7470, 73coeq12d 5286 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( (
norm `  T )  o.  ( -g `  T
) ) )
7548, 30syl 17 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T ) )
7674, 75eqtr3d 2658 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) )  =  ( dist `  T
) )
77 eqimss 3657 . . . 4  |-  ( ( ( norm `  T
)  o.  ( -g `  T ) )  =  ( dist `  T
)  ->  ( ( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) )
7876, 77syl 17 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) ) 
C_  ( dist `  T
) )
79 eqid 2622 . . . 4  |-  ( norm `  T )  =  (
norm `  T )
80 eqid 2622 . . . 4  |-  ( -g `  T )  =  (
-g `  T )
81 eqid 2622 . . . 4  |-  ( dist `  T )  =  (
dist `  T )
8279, 80, 81isngp 22400 . . 3  |-  ( T  e. NrmGrp 
<->  ( T  e.  Grp  /\  T  e.  MetSp  /\  (
( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) ) )
8346, 67, 78, 82syl3anbrc 1246 . 2  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e. NrmGrp )
8444, 83impbida 877 1  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    X. cxp 5112    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   Basecbs 15857   +g cplusg 15941   distcds 15950   TopOpenctopn 16082   Grpcgrp 17422   -gcsg 17424   Metcme 19732   MetOpencmopn 19736   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382   toNrmGrp ctng 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389
This theorem is referenced by:  tngngpd  22457  tngngp  22458  nrmtngnrm  22462  tngngpim  22463  tngnrg  22478
  Copyright terms: Public domain W3C validator