![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isngp | Structured version Visualization version GIF version |
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
isngp.n | ⊢ 𝑁 = (norm‘𝐺) |
isngp.z | ⊢ − = (-g‘𝐺) |
isngp.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
isngp | ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3796 | . . 3 ⊢ (𝐺 ∈ (Grp ∩ MetSp) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp)) | |
2 | 1 | anbi1i 731 | . 2 ⊢ ((𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
3 | fveq2 6191 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = (norm‘𝐺)) | |
4 | isngp.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
5 | 3, 4 | syl6eqr 2674 | . . . . 5 ⊢ (𝑔 = 𝐺 → (norm‘𝑔) = 𝑁) |
6 | fveq2 6191 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = (-g‘𝐺)) | |
7 | isngp.z | . . . . . 6 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | syl6eqr 2674 | . . . . 5 ⊢ (𝑔 = 𝐺 → (-g‘𝑔) = − ) |
9 | 5, 8 | coeq12d 5286 | . . . 4 ⊢ (𝑔 = 𝐺 → ((norm‘𝑔) ∘ (-g‘𝑔)) = (𝑁 ∘ − )) |
10 | fveq2 6191 | . . . . 5 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) | |
11 | isngp.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
12 | 10, 11 | syl6eqr 2674 | . . . 4 ⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
13 | 9, 12 | sseq12d 3634 | . . 3 ⊢ (𝑔 = 𝐺 → (((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
14 | df-ngp 22388 | . . 3 ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} | |
15 | 13, 14 | elrab2 3366 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ (Grp ∩ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
16 | df-3an 1039 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) | |
17 | 2, 15, 16 | 3bitr4i 292 | 1 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 ∘ ccom 5118 ‘cfv 5888 distcds 15950 Grpcgrp 17422 -gcsg 17424 MetSpcmt 22123 normcnm 22381 NrmGrpcngp 22382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-co 5123 df-iota 5851 df-fv 5896 df-ngp 22388 |
This theorem is referenced by: isngp2 22401 ngpgrp 22403 ngpms 22404 tngngp2 22456 cnngp 22583 zhmnrg 30011 |
Copyright terms: Public domain | W3C validator |