MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   Unicode version

Theorem isngp2 22401
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
isngp2.x  |-  X  =  ( Base `  G
)
isngp2.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
isngp2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3  |-  N  =  ( norm `  G
)
2 isngp.z . . 3  |-  .-  =  ( -g `  G )
3 isngp.d . . 3  |-  D  =  ( dist `  G
)
41, 2, 3isngp 22400 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
5 isngp2.e . . . . . . 7  |-  E  =  ( D  |`  ( X  X.  X ) )
6 resss 5422 . . . . . . 7  |-  ( D  |`  ( X  X.  X
) )  C_  D
75, 6eqsstri 3635 . . . . . 6  |-  E  C_  D
8 sseq1 3626 . . . . . 6  |-  ( ( N  o.  .-  )  =  E  ->  ( ( N  o.  .-  )  C_  D  <->  E  C_  D ) )
97, 8mpbiri 248 . . . . 5  |-  ( ( N  o.  .-  )  =  E  ->  ( N  o.  .-  )  C_  D )
10 isngp2.x . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
113reseq1i 5392 . . . . . . . . . . . . . 14  |-  ( D  |`  ( X  X.  X
) )  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
125, 11eqtri 2644 . . . . . . . . . . . . 13  |-  E  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
1310, 12msmet 22262 . . . . . . . . . . . 12  |-  ( G  e.  MetSp  ->  E  e.  ( Met `  X ) )
141, 10, 3, 5nmf2 22397 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N : X --> RR )
1513, 14sylan2 491 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  ->  N : X --> RR )
1615adantr 481 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  N : X --> RR )
1710, 2grpsubf 17494 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .-  :
( X  X.  X
) --> X )
1817ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  .-  :
( X  X.  X
) --> X )
19 fco 6058 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  .-  : ( X  X.  X ) --> X )  ->  ( N  o.  .-  ) : ( X  X.  X ) --> RR )
2016, 18, 19syl2anc 693 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> RR )
21 fdm 6051 . . . . . . . . 9  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2322reseq2d 5396 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( E  |`  ( X  X.  X
) ) )
2410, 12msf 22263 . . . . . . . . . 10  |-  ( G  e.  MetSp  ->  E :
( X  X.  X
) --> RR )
2524ad2antlr 763 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  E : ( X  X.  X ) --> RR )
26 ffun 6048 . . . . . . . . 9  |-  ( E : ( X  X.  X ) --> RR  ->  Fun 
E )
2725, 26syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  Fun  E )
28 simpr 477 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  D )
29 ssv 3625 . . . . . . . . . . . 12  |-  RR  C_  _V
30 fss 6056 . . . . . . . . . . . 12  |-  ( ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  /\  RR  C_  _V )  -> 
( N  o.  .-  ) : ( X  X.  X ) --> _V )
3120, 29, 30sylancl 694 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> _V )
32 fssxp 6060 . . . . . . . . . . 11  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> _V  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3428, 33ssind 3837 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( D  i^i  (
( X  X.  X
)  X.  _V )
) )
35 df-res 5126 . . . . . . . . . 10  |-  ( D  |`  ( X  X.  X
) )  =  ( D  i^i  ( ( X  X.  X )  X.  _V ) )
365, 35eqtri 2644 . . . . . . . . 9  |-  E  =  ( D  i^i  (
( X  X.  X
)  X.  _V )
)
3734, 36syl6sseqr 3652 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  E )
38 funssres 5930 . . . . . . . 8  |-  ( ( Fun  E  /\  ( N  o.  .-  )  C_  E )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
3927, 37, 38syl2anc 693 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
40 ffn 6045 . . . . . . . 8  |-  ( E : ( X  X.  X ) --> RR  ->  E  Fn  ( X  X.  X ) )
41 fnresdm 6000 . . . . . . . 8  |-  ( E  Fn  ( X  X.  X )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4225, 40, 413syl 18 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4323, 39, 423eqtr3d 2664 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  =  E )
4443ex 450 . . . . 5  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  C_  D  ->  ( N  o.  .-  )  =  E ) )
459, 44impbid2 216 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  =  E  <->  ( N  o.  .-  )  C_  D
) )
4645pm5.32i 669 . . 3  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
47 df-3an 1039 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E ) )
48 df-3an 1039 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
4946, 47, 483bitr4i 292 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( G  e.  Grp  /\  G  e. 
MetSp  /\  ( N  o.  .-  )  C_  D )
)
504, 49bitr4i 267 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    X. cxp 5112   dom cdm 5114    |` cres 5116    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888   RRcr 9935   Basecbs 15857   distcds 15950   Grpcgrp 17422   -gcsg 17424   Metcme 19732   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388
This theorem is referenced by:  isngp3  22402  ngpds  22408  ngppropd  22441  nrmtngdist  22461  nrmtngnrm  22462
  Copyright terms: Public domain W3C validator