MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq3 Structured version   Visualization version   Unicode version

Theorem isoeq3 6569
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )

Proof of Theorem isoeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4655 . . . . 5  |-  ( S  =  T  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) T ( H `  y ) ) )
21bibi2d 332 . . . 4  |-  ( S  =  T  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
322ralbidv 2989 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
43anbi2d 740 . 2  |-  ( S  =  T  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) T ( H `  y ) ) ) ) )
5 df-isom 5897 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5897 . 2  |-  ( H 
Isom  R ,  T  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
74, 5, 63bitr4g 303 1  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   A.wral 2912   class class class wbr 4653   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-ral 2917  df-br 4654  df-isom 5897
This theorem is referenced by:  fnwelem  7292  hartogslem1  8447  leiso  13243  gtiso  29478
  Copyright terms: Public domain W3C validator