MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwelem Structured version   Visualization version   Unicode version

Theorem fnwelem 7292
Description: Lemma for fnwe 7293. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) }
fnwe.2  |-  ( ph  ->  F : A --> B )
fnwe.3  |-  ( ph  ->  R  We  B )
fnwe.4  |-  ( ph  ->  S  We  A )
fnwe.5  |-  ( ph  ->  ( F " w
)  e.  _V )
fnwelem.6  |-  Q  =  { <. u ,  v
>.  |  ( (
u  e.  ( B  X.  A )  /\  v  e.  ( B  X.  A ) )  /\  ( ( 1st `  u
) R ( 1st `  v )  \/  (
( 1st `  u
)  =  ( 1st `  v )  /\  ( 2nd `  u ) S ( 2nd `  v
) ) ) ) }
fnwelem.7  |-  G  =  ( z  e.  A  |-> 
<. ( F `  z
) ,  z >.
)
Assertion
Ref Expression
fnwelem  |-  ( ph  ->  T  We  A )
Distinct variable groups:    v, u, w, x, y, z, A   
u, B, v, w, x, y, z    w, G, x, y    ph, w, x, z    u, F, v, w, x, y, z   
w, Q, x, y   
u, R, v, w, x, y    u, S, v, w, x, y   
w, T
Allowed substitution hints:    ph( y, v, u)    Q( z, v, u)    R( z)    S( z)    T( x, y, z, v, u)    G( z, v, u)

Proof of Theorem fnwelem
StepHypRef Expression
1 fnwe.2 . . . 4  |-  ( ph  ->  F : A --> B )
2 ffvelrn 6357 . . . . . 6  |-  ( ( F : A --> B  /\  z  e.  A )  ->  ( F `  z
)  e.  B )
3 simpr 477 . . . . . 6  |-  ( ( F : A --> B  /\  z  e.  A )  ->  z  e.  A )
42, 3opelxpd 5149 . . . . 5  |-  ( ( F : A --> B  /\  z  e.  A )  -> 
<. ( F `  z
) ,  z >.  e.  ( B  X.  A
) )
5 fnwelem.7 . . . . 5  |-  G  =  ( z  e.  A  |-> 
<. ( F `  z
) ,  z >.
)
64, 5fmptd 6385 . . . 4  |-  ( F : A --> B  ->  G : A --> ( B  X.  A ) )
7 frn 6053 . . . 4  |-  ( G : A --> ( B  X.  A )  ->  ran  G  C_  ( B  X.  A ) )
81, 6, 73syl 18 . . 3  |-  ( ph  ->  ran  G  C_  ( B  X.  A ) )
9 fnwe.3 . . . 4  |-  ( ph  ->  R  We  B )
10 fnwe.4 . . . 4  |-  ( ph  ->  S  We  A )
11 fnwelem.6 . . . . 5  |-  Q  =  { <. u ,  v
>.  |  ( (
u  e.  ( B  X.  A )  /\  v  e.  ( B  X.  A ) )  /\  ( ( 1st `  u
) R ( 1st `  v )  \/  (
( 1st `  u
)  =  ( 1st `  v )  /\  ( 2nd `  u ) S ( 2nd `  v
) ) ) ) }
1211wexp 7291 . . . 4  |-  ( ( R  We  B  /\  S  We  A )  ->  Q  We  ( B  X.  A ) )
139, 10, 12syl2anc 693 . . 3  |-  ( ph  ->  Q  We  ( B  X.  A ) )
14 wess 5101 . . 3  |-  ( ran 
G  C_  ( B  X.  A )  ->  ( Q  We  ( B  X.  A )  ->  Q  We  ran  G ) )
158, 13, 14sylc 65 . 2  |-  ( ph  ->  Q  We  ran  G
)
16 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
17 id 22 . . . . . . . . . . . 12  |-  ( z  =  x  ->  z  =  x )
1816, 17opeq12d 4410 . . . . . . . . . . 11  |-  ( z  =  x  ->  <. ( F `  z ) ,  z >.  =  <. ( F `  x ) ,  x >. )
19 opex 4932 . . . . . . . . . . 11  |-  <. ( F `  x ) ,  x >.  e.  _V
2018, 5, 19fvmpt 6282 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( G `  x )  =  <. ( F `  x ) ,  x >. )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
22 id 22 . . . . . . . . . . . 12  |-  ( z  =  y  ->  z  =  y )
2321, 22opeq12d 4410 . . . . . . . . . . 11  |-  ( z  =  y  ->  <. ( F `  z ) ,  z >.  =  <. ( F `  y ) ,  y >. )
24 opex 4932 . . . . . . . . . . 11  |-  <. ( F `  y ) ,  y >.  e.  _V
2523, 5, 24fvmpt 6282 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( G `  y )  =  <. ( F `  y ) ,  y
>. )
2620, 25eqeqan12d 2638 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( G `  x )  =  ( G `  y )  <->  <. ( F `  x
) ,  x >.  = 
<. ( F `  y
) ,  y >.
) )
27 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
28 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
2927, 28opth 4945 . . . . . . . . . 10  |-  ( <.
( F `  x
) ,  x >.  = 
<. ( F `  y
) ,  y >.  <->  ( ( F `  x
)  =  ( F `
 y )  /\  x  =  y )
)
3029simprbi 480 . . . . . . . . 9  |-  ( <.
( F `  x
) ,  x >.  = 
<. ( F `  y
) ,  y >.  ->  x  =  y )
3126, 30syl6bi 243 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( G `  x )  =  ( G `  y )  ->  x  =  y ) )
3231rgen2a 2977 . . . . . . 7  |-  A. x  e.  A  A. y  e.  A  ( ( G `  x )  =  ( G `  y )  ->  x  =  y )
33 dff13 6512 . . . . . . 7  |-  ( G : A -1-1-> ( B  X.  A )  <->  ( G : A --> ( B  X.  A )  /\  A. x  e.  A  A. y  e.  A  (
( G `  x
)  =  ( G `
 y )  ->  x  =  y )
) )
346, 32, 33sylanblrc 697 . . . . . 6  |-  ( F : A --> B  ->  G : A -1-1-> ( B  X.  A ) )
35 f1f1orn 6148 . . . . . 6  |-  ( G : A -1-1-> ( B  X.  A )  ->  G : A -1-1-onto-> ran  G )
36 f1ocnv 6149 . . . . . 6  |-  ( G : A -1-1-onto-> ran  G  ->  `' G : ran  G -1-1-onto-> A )
371, 34, 35, 364syl 19 . . . . 5  |-  ( ph  ->  `' G : ran  G -1-1-onto-> A
)
38 eqid 2622 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A
)  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A )  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) }
3938f1oiso2 6602 . . . . . 6  |-  ( `' G : ran  G -1-1-onto-> A  ->  `' G  Isom  Q ,  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( `' `' G `  x ) Q ( `' `' G `  y ) ) }  ( ran 
G ,  A ) )
40 fnwe.1 . . . . . . . 8  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) }
41 frel 6050 . . . . . . . . . . . . . . . 16  |-  ( G : A --> ( B  X.  A )  ->  Rel  G )
42 dfrel2 5583 . . . . . . . . . . . . . . . 16  |-  ( Rel 
G  <->  `' `' G  =  G
)
4341, 42sylib 208 . . . . . . . . . . . . . . 15  |-  ( G : A --> ( B  X.  A )  ->  `' `' G  =  G
)
4443fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( G : A --> ( B  X.  A )  -> 
( `' `' G `  x )  =  ( G `  x ) )
4543fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( G : A --> ( B  X.  A )  -> 
( `' `' G `  y )  =  ( G `  y ) )
4644, 45breq12d 4666 . . . . . . . . . . . . 13  |-  ( G : A --> ( B  X.  A )  -> 
( ( `' `' G `  x ) Q ( `' `' G `  y )  <->  ( G `  x ) Q ( G `  y ) ) )
476, 46syl 17 . . . . . . . . . . . 12  |-  ( F : A --> B  -> 
( ( `' `' G `  x ) Q ( `' `' G `  y )  <->  ( G `  x ) Q ( G `  y ) ) )
4847adantr 481 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( `' `' G `  x ) Q ( `' `' G `  y )  <-> 
( G `  x
) Q ( G `
 y ) ) )
4920, 25breqan12d 4669 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( G `  x ) Q ( G `  y )  <->  <. ( F `  x
) ,  x >. Q
<. ( F `  y
) ,  y >.
) )
5049adantl 482 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( G `  x
) Q ( G `
 y )  <->  <. ( F `
 x ) ,  x >. Q <. ( F `  y ) ,  y >. )
)
51 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
52 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x  e.  A )
5351, 52jca 554 . . . . . . . . . . . . . 14  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( F `  x )  e.  B  /\  x  e.  A
) )
54 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( F `  y
)  e.  B )
55 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  y  e.  A )  ->  y  e.  A )
5654, 55jca 554 . . . . . . . . . . . . . 14  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( F `  y )  e.  B  /\  y  e.  A
) )
5753, 56anim12dan 882 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( ( F `  x )  e.  B  /\  x  e.  A
)  /\  ( ( F `  y )  e.  B  /\  y  e.  A ) ) )
5857biantrurd 529 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) )  <->  ( (
( ( F `  x )  e.  B  /\  x  e.  A
)  /\  ( ( F `  y )  e.  B  /\  y  e.  A ) )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) ) )
59 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( u  e.  ( B  X.  A
)  <->  <. ( F `  x ) ,  x >.  e.  ( B  X.  A ) ) )
60 opelxp 5146 . . . . . . . . . . . . . . . 16  |-  ( <.
( F `  x
) ,  x >.  e.  ( B  X.  A
)  <->  ( ( F `
 x )  e.  B  /\  x  e.  A ) )
6159, 60syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( u  e.  ( B  X.  A
)  <->  ( ( F `
 x )  e.  B  /\  x  e.  A ) ) )
6261anbi1d 741 . . . . . . . . . . . . . 14  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( u  e.  ( B  X.  A )  /\  v  e.  ( B  X.  A
) )  <->  ( (
( F `  x
)  e.  B  /\  x  e.  A )  /\  v  e.  ( B  X.  A ) ) ) )
6327, 28op1std 7178 . . . . . . . . . . . . . . . 16  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( 1st `  u
)  =  ( F `
 x ) )
6463breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( 1st `  u ) R ( 1st `  v )  <-> 
( F `  x
) R ( 1st `  v ) ) )
6563eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( 1st `  u )  =  ( 1st `  v )  <-> 
( F `  x
)  =  ( 1st `  v ) ) )
6627, 28op2ndd 7179 . . . . . . . . . . . . . . . . 17  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( 2nd `  u
)  =  x )
6766breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( 2nd `  u ) S ( 2nd `  v )  <-> 
x S ( 2nd `  v ) ) )
6865, 67anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( ( 1st `  u )  =  ( 1st `  v
)  /\  ( 2nd `  u ) S ( 2nd `  v ) )  <->  ( ( F `
 x )  =  ( 1st `  v
)  /\  x S
( 2nd `  v
) ) ) )
6964, 68orbi12d 746 . . . . . . . . . . . . . 14  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( ( 1st `  u ) R ( 1st `  v
)  \/  ( ( 1st `  u )  =  ( 1st `  v
)  /\  ( 2nd `  u ) S ( 2nd `  v ) ) )  <->  ( ( F `  x ) R ( 1st `  v
)  \/  ( ( F `  x )  =  ( 1st `  v
)  /\  x S
( 2nd `  v
) ) ) ) )
7062, 69anbi12d 747 . . . . . . . . . . . . 13  |-  ( u  =  <. ( F `  x ) ,  x >.  ->  ( ( ( u  e.  ( B  X.  A )  /\  v  e.  ( B  X.  A ) )  /\  ( ( 1st `  u
) R ( 1st `  v )  \/  (
( 1st `  u
)  =  ( 1st `  v )  /\  ( 2nd `  u ) S ( 2nd `  v
) ) ) )  <-> 
( ( ( ( F `  x )  e.  B  /\  x  e.  A )  /\  v  e.  ( B  X.  A
) )  /\  (
( F `  x
) R ( 1st `  v )  \/  (
( F `  x
)  =  ( 1st `  v )  /\  x S ( 2nd `  v
) ) ) ) ) )
71 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( v  e.  ( B  X.  A
)  <->  <. ( F `  y ) ,  y
>.  e.  ( B  X.  A ) ) )
72 opelxp 5146 . . . . . . . . . . . . . . . 16  |-  ( <.
( F `  y
) ,  y >.  e.  ( B  X.  A
)  <->  ( ( F `
 y )  e.  B  /\  y  e.  A ) )
7371, 72syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( v  e.  ( B  X.  A
)  <->  ( ( F `
 y )  e.  B  /\  y  e.  A ) ) )
7473anbi2d 740 . . . . . . . . . . . . . 14  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( ( ( F `  x
)  e.  B  /\  x  e.  A )  /\  v  e.  ( B  X.  A ) )  <-> 
( ( ( F `
 x )  e.  B  /\  x  e.  A )  /\  (
( F `  y
)  e.  B  /\  y  e.  A )
) ) )
75 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( F `
 y )  e. 
_V
76 vex 3203 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
7775, 76op1std 7178 . . . . . . . . . . . . . . . 16  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( 1st `  v
)  =  ( F `
 y ) )
7877breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( F `
 x ) R ( 1st `  v
)  <->  ( F `  x ) R ( F `  y ) ) )
7977eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( F `
 x )  =  ( 1st `  v
)  <->  ( F `  x )  =  ( F `  y ) ) )
8075, 76op2ndd 7179 . . . . . . . . . . . . . . . . 17  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( 2nd `  v
)  =  y )
8180breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( x S ( 2nd `  v
)  <->  x S y ) )
8279, 81anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( ( F `  x )  =  ( 1st `  v
)  /\  x S
( 2nd `  v
) )  <->  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) )
8378, 82orbi12d 746 . . . . . . . . . . . . . 14  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( ( F `  x ) R ( 1st `  v
)  \/  ( ( F `  x )  =  ( 1st `  v
)  /\  x S
( 2nd `  v
) ) )  <->  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x S y ) ) ) )
8474, 83anbi12d 747 . . . . . . . . . . . . 13  |-  ( v  =  <. ( F `  y ) ,  y
>.  ->  ( ( ( ( ( F `  x )  e.  B  /\  x  e.  A
)  /\  v  e.  ( B  X.  A
) )  /\  (
( F `  x
) R ( 1st `  v )  \/  (
( F `  x
)  =  ( 1st `  v )  /\  x S ( 2nd `  v
) ) ) )  <-> 
( ( ( ( F `  x )  e.  B  /\  x  e.  A )  /\  (
( F `  y
)  e.  B  /\  y  e.  A )
)  /\  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x S y ) ) ) ) )
8519, 24, 70, 84, 11brab 4998 . . . . . . . . . . . 12  |-  ( <.
( F `  x
) ,  x >. Q
<. ( F `  y
) ,  y >.  <->  ( ( ( ( F `
 x )  e.  B  /\  x  e.  A )  /\  (
( F `  y
)  e.  B  /\  y  e.  A )
)  /\  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x S y ) ) ) )
8658, 85syl6rbbr 279 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( <. ( F `  x
) ,  x >. Q
<. ( F `  y
) ,  y >.  <->  ( ( F `  x
) R ( F `
 y )  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) ) )
8748, 50, 863bitrrd 295 . . . . . . . . . 10  |-  ( ( F : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) )  <->  ( `' `' G `  x ) Q ( `' `' G `  y )
) )
8887pm5.32da 673 . . . . . . . . 9  |-  ( F : A --> B  -> 
( ( ( x  e.  A  /\  y  e.  A )  /\  (
( F `  x
) R ( F `
 y )  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( `' `' G `  x ) Q ( `' `' G `  y ) ) ) )
8988opabbidv 4716 . . . . . . . 8  |-  ( F : A --> B  ->  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A
)  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) } )
9040, 89syl5eq 2668 . . . . . . 7  |-  ( F : A --> B  ->  T  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A
)  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) } )
91 isoeq3 6569 . . . . . . 7  |-  ( T  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A
)  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) }  ->  ( `' G  Isom  Q ,  T  ( ran  G ,  A )  <->  `' G  Isom  Q ,  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A
)  /\  ( `' `' G `  x ) Q ( `' `' G `  y )
) }  ( ran 
G ,  A ) ) )
9290, 91syl 17 . . . . . 6  |-  ( F : A --> B  -> 
( `' G  Isom  Q ,  T  ( ran 
G ,  A )  <->  `' G  Isom  Q ,  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( `' `' G `  x ) Q ( `' `' G `  y ) ) }  ( ran 
G ,  A ) ) )
9339, 92syl5ibr 236 . . . . 5  |-  ( F : A --> B  -> 
( `' G : ran  G -1-1-onto-> A  ->  `' G  Isom  Q ,  T  ( ran  G ,  A
) ) )
941, 37, 93sylc 65 . . . 4  |-  ( ph  ->  `' G  Isom  Q ,  T  ( ran  G ,  A ) )
95 isocnv 6580 . . . 4  |-  ( `' G  Isom  Q ,  T  ( ran  G ,  A )  ->  `' `' G  Isom  T ,  Q  ( A ,  ran  G ) )
9694, 95syl 17 . . 3  |-  ( ph  ->  `' `' G  Isom  T ,  Q  ( A ,  ran  G ) )
97 imacnvcnv 5599 . . . . 5  |-  ( `' `' G " w )  =  ( G "
w )
98 fnwe.5 . . . . . . 7  |-  ( ph  ->  ( F " w
)  e.  _V )
99 vex 3203 . . . . . . 7  |-  w  e. 
_V
100 xpexg 6960 . . . . . . 7  |-  ( ( ( F " w
)  e.  _V  /\  w  e.  _V )  ->  ( ( F "
w )  X.  w
)  e.  _V )
10198, 99, 100sylancl 694 . . . . . 6  |-  ( ph  ->  ( ( F "
w )  X.  w
)  e.  _V )
102 imadmres 5627 . . . . . . 7  |-  ( G
" dom  ( G  |`  w ) )  =  ( G " w
)
103 dmres 5419 . . . . . . . . . . 11  |-  dom  ( G  |`  w )  =  ( w  i^i  dom  G )
104103elin2 3801 . . . . . . . . . 10  |-  ( x  e.  dom  ( G  |`  w )  <->  ( x  e.  w  /\  x  e.  dom  G ) )
105 simprr 796 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  x  e.  dom  G )
106 f1dm 6105 . . . . . . . . . . . . . . 15  |-  ( G : A -1-1-> ( B  X.  A )  ->  dom  G  =  A )
1071, 34, 1063syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  G  =  A )
108107adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  dom  G  =  A )
109105, 108eleqtrd 2703 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  x  e.  A
)
110109, 20syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  ( G `  x )  =  <. ( F `  x ) ,  x >. )
1111ffnd 6046 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  A )
112111adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  F  Fn  A
)
113 dmres 5419 . . . . . . . . . . . . . . 15  |-  dom  ( F  |`  w )  =  ( w  i^i  dom  F )
114 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  dom  F )  C_ 
dom  F
115 fndm 5990 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  ->  dom  F  =  A )
116112, 115syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  dom  F  =  A )
117114, 116syl5sseq 3653 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  ( w  i^i 
dom  F )  C_  A )
118113, 117syl5eqss 3649 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  dom  ( F  |`  w )  C_  A
)
119 simprl 794 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  x  e.  w
)
120109, 116eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  x  e.  dom  F )
121113elin2 3801 . . . . . . . . . . . . . . 15  |-  ( x  e.  dom  ( F  |`  w )  <->  ( x  e.  w  /\  x  e.  dom  F ) )
122119, 120, 121sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  x  e.  dom  ( F  |`  w ) )
123 fnfvima 6496 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  dom  ( F  |`  w
)  C_  A  /\  x  e.  dom  ( F  |`  w ) )  -> 
( F `  x
)  e.  ( F
" dom  ( F  |`  w ) ) )
124112, 118, 122, 123syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  ( F `  x )  e.  ( F " dom  ( F  |`  w ) ) )
125 imadmres 5627 . . . . . . . . . . . . 13  |-  ( F
" dom  ( F  |`  w ) )  =  ( F " w
)
126124, 125syl6eleq 2711 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  ( F `  x )  e.  ( F " w ) )
127126, 119opelxpd 5149 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  <. ( F `  x ) ,  x >.  e.  ( ( F
" w )  X.  w ) )
128110, 127eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  w  /\  x  e.  dom  G ) )  ->  ( G `  x )  e.  ( ( F " w
)  X.  w ) )
129104, 128sylan2b 492 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  dom  ( G  |`  w
) )  ->  ( G `  x )  e.  ( ( F "
w )  X.  w
) )
130129ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  dom  ( G  |`  w ) ( G `  x
)  e.  ( ( F " w )  X.  w ) )
131 f1fun 6103 . . . . . . . . . 10  |-  ( G : A -1-1-> ( B  X.  A )  ->  Fun  G )
1321, 34, 1313syl 18 . . . . . . . . 9  |-  ( ph  ->  Fun  G )
133 resss 5422 . . . . . . . . . 10  |-  ( G  |`  w )  C_  G
134 dmss 5323 . . . . . . . . . 10  |-  ( ( G  |`  w )  C_  G  ->  dom  ( G  |`  w )  C_  dom  G )
135133, 134ax-mp 5 . . . . . . . . 9  |-  dom  ( G  |`  w )  C_  dom  G
136 funimass4 6247 . . . . . . . . 9  |-  ( ( Fun  G  /\  dom  ( G  |`  w ) 
C_  dom  G )  ->  ( ( G " dom  ( G  |`  w
) )  C_  (
( F " w
)  X.  w )  <->  A. x  e.  dom  ( G  |`  w ) ( G `  x
)  e.  ( ( F " w )  X.  w ) ) )
137132, 135, 136sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( ( G " dom  ( G  |`  w
) )  C_  (
( F " w
)  X.  w )  <->  A. x  e.  dom  ( G  |`  w ) ( G `  x
)  e.  ( ( F " w )  X.  w ) ) )
138130, 137mpbird 247 . . . . . . 7  |-  ( ph  ->  ( G " dom  ( G  |`  w ) )  C_  ( ( F " w )  X.  w ) )
139102, 138syl5eqssr 3650 . . . . . 6  |-  ( ph  ->  ( G " w
)  C_  ( ( F " w )  X.  w ) )
140101, 139ssexd 4805 . . . . 5  |-  ( ph  ->  ( G " w
)  e.  _V )
14197, 140syl5eqel 2705 . . . 4  |-  ( ph  ->  ( `' `' G " w )  e.  _V )
142141alrimiv 1855 . . 3  |-  ( ph  ->  A. w ( `' `' G " w )  e.  _V )
143 isowe2 6600 . . 3  |-  ( ( `' `' G  Isom  T ,  Q  ( A ,  ran  G )  /\  A. w ( `' `' G " w )  e. 
_V )  ->  ( Q  We  ran  G  ->  T  We  A )
)
14496, 142, 143syl2anc 693 . 2  |-  ( ph  ->  ( Q  We  ran  G  ->  T  We  A
) )
14515, 144mpd 15 1  |-  ( ph  ->  T  We  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fnwe  7293
  Copyright terms: Public domain W3C validator