![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-isom | Structured version Visualization version Unicode version |
Description: Define the isomorphism
predicate. We read this as "![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-isom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | cR |
. . 3
![]() ![]() | |
4 | cS |
. . 3
![]() ![]() | |
5 | cH |
. . 3
![]() ![]() | |
6 | 1, 2, 3, 4, 5 | wiso 5889 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 5 | wf1o 5887 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
8 | vx |
. . . . . . . 8
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . 7
![]() ![]() |
10 | vy |
. . . . . . . 8
![]() ![]() | |
11 | 10 | cv 1482 |
. . . . . . 7
![]() ![]() |
12 | 9, 11, 3 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() |
13 | 9, 5 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 5 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 13, 14, 4 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 12, 15 | wb 196 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 10, 1 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17, 8, 1 | wral 2912 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 7, 18 | wa 384 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 6, 19 | wb 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 6567 isoeq2 6568 isoeq3 6569 isoeq4 6570 isoeq5 6571 nfiso 6572 isof1o 6573 isof1oidb 6574 isof1oopb 6575 isorel 6576 soisores 6577 soisoi 6578 isoid 6579 isocnv 6580 isocnv2 6581 isocnv3 6582 isores2 6583 isores3 6585 isotr 6586 isoini2 6589 f1oiso 6601 f1owe 6603 smoiso2 7466 alephiso 8921 compssiso 9196 negiso 11003 om2uzisoi 12753 icopnfhmeo 22742 reefiso 24202 logltb 24346 isoun 29479 xrmulc1cn 29976 wepwsolem 37612 iso0 38506 fourierdlem54 40377 |
Copyright terms: Public domain | W3C validator |