HomeHome Metamath Proof Explorer
Theorem List (p. 66 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelabrex 6501* Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
 
Theoremabrexco 6502* Composition of two image maps  C ( y ) and 
B ( w ). (Contributed by NM, 27-May-2013.)
 |-  B  e.  _V   &    |-  (
 y  =  B  ->  C  =  D )   =>    |-  { x  |  E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C }  =  { x  |  E. w  e.  A  x  =  D }
 
Theoremimaiun 6503* The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( A " U_ x  e.  B  C )  = 
 U_ x  e.  B  ( A " C )
 
Theoremimauni 6504* The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
 |-  ( A " U. B )  =  U_ x  e.  B  ( A " x )
 
Theoremfniunfv 6505* The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
 |-  ( F  Fn  A  -> 
 U_ x  e.  A  ( F `  x )  =  U. ran  F )
 
Theoremfuniunfv 6506* The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to  F  Fn  A, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

 |-  ( Fun  F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F
 " A ) )
 
Theoremfuniunfvf 6507* The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 6506 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
 |-  F/_ x F   =>    |-  ( Fun  F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F
 " A ) )
 
Theoremeluniima 6508* Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
 |-  ( Fun  F  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
 
Theoremelunirn 6509* Membership in the union of the range of a function. See elunirnALT 6510 for a shorter proof which uses ax-pow 4843. (Contributed by NM, 24-Sep-2006.)
 |-  ( Fun  F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `
  x ) ) )
 
TheoremelunirnALT 6510* Alternate proof of elunirn 6509. It is shorter but requires ax-pow 4843 (through eluniima 6508, funiunfv 6506, ndmfv 6218). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Fun  F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `
  x ) ) )
 
Theoremfnunirn 6511* Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
 |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
 
Theoremdff13 6512* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
  x )  =  ( F `  y
 )  ->  x  =  y ) ) )
 
Theoremdff13f 6513* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
 |-  F/_ x F   &    |-  F/_ y F   =>    |-  ( F : A -1-1-> B  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
  x )  =  ( F `  y
 )  ->  x  =  y ) ) )
 
Theoremf1veqaeq 6514 If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
 |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( ( F `  C )  =  ( F `  D )  ->  C  =  D )
 )
 
Theoremf1cofveqaeq 6515 If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
 |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B ) 
 /\  ( X  e.  A  /\  Y  e.  A ) )  ->  ( ( F `  ( G `
  X ) )  =  ( F `  ( G `  Y ) )  ->  X  =  Y ) )
 
Theoremf1cofveqaeqALT 6516 Alternate proof of f1cofveqaeq 6515, 1 essential step shorter, but having more bytes (305 vs. 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B ) 
 /\  ( X  e.  A  /\  Y  e.  A ) )  ->  ( ( F `  ( G `
  X ) )  =  ( F `  ( G `  Y ) )  ->  X  =  Y ) )
 
Theorem2f1fvneq 6517 If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
 |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D ) 
 /\  ( A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  ->  ( ( ( E `  ( F `
  A ) )  =  X  /\  ( E `  ( F `  B ) )  =  Y )  ->  X  =/=  Y ) )
 
Theoremf1mpt 6518* Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  ( F : A -1-1-> B  <->  (
 A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
 
Theoremf1fveq 6519 Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.)
 |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( ( F `  C )  =  ( F `  D )  <->  C  =  D ) )
 
Theoremf1elima 6520 Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
  X )  e.  ( F " Y ) 
 <->  X  e.  Y ) )
 
Theoremf1imass 6521 Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F
 " D )  <->  C  C_  D ) )
 
Theoremf1imaeq 6522 Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D )  <->  C  =  D ) )
 
Theoremf1imapss 6523 Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C.  ( F
 " D )  <->  C  C.  D ) )
 
Theoremfpropnf1 6524 A function, given by an unordered pair of ordered pairs, which is not injective/one-to-one. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.)
 |-  F  =  { <. X ,  Z >. ,  <. Y ,  Z >. }   =>    |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  X  =/=  Y ) 
 ->  ( Fun  F  /\  -. 
 Fun  `' F ) )
 
Theoremf1dom3fv3dif 6525 The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019.)
 |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )
 )   &    |-  ( ph  ->  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C ) )   &    |-  ( ph  ->  F : { A ,  B ,  C } -1-1-> R )   =>    |-  ( ph  ->  (
 ( F `  A )  =/=  ( F `  B )  /\  ( F `
  A )  =/=  ( F `  C )  /\  ( F `  B )  =/=  ( F `  C ) ) )
 
Theoremf1dom3el3dif 6526* The range of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019.)
 |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )
 )   &    |-  ( ph  ->  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C ) )   &    |-  ( ph  ->  F : { A ,  B ,  C } -1-1-> R )   =>    |-  ( ph  ->  E. x  e.  R  E. y  e.  R  E. z  e.  R  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
 
Theoremdff14a 6527* A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  ( F `  x )  =/=  ( F `  y ) ) ) )
 
Theoremdff14b 6528* A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  A. x  e.  A  A. y  e.  ( A  \  { x } ) ( F `
  x )  =/=  ( F `  y
 ) ) )
 
Theoremf12dfv 6529 A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
 |-  A  =  { X ,  Y }   =>    |-  ( ( ( X  e.  U  /\  Y  e.  V )  /\  X  =/=  Y )  ->  ( F : A -1-1-> B  <->  ( F : A
 --> B  /\  ( F `
  X )  =/=  ( F `  Y ) ) ) )
 
Theoremf13dfv 6530 A one-to-one function with a domain with at least three different elements in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
 |-  A  =  { X ,  Y ,  Z }   =>    |-  (
 ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W ) 
 /\  ( X  =/=  Y 
 /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  ( F : A -1-1-> B  <->  ( F : A
 --> B  /\  ( ( F `  X )  =/=  ( F `  Y )  /\  ( F `
  X )  =/=  ( F `  Z )  /\  ( F `  Y )  =/=  ( F `  Z ) ) ) ) )
 
Theoremdff1o6 6531* A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
 |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran 
 F  =  B  /\  A. x  e.  A  A. y  e.  A  (
 ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
 
Theoremf1ocnvfv1 6532 The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
 
Theoremf1ocnvfv2 6533 The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
 
Theoremf1ocnvfv 6534 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `
  C )  =  D  ->  ( `' F `  D )  =  C ) )
 
Theoremf1ocnvfvb 6535 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( F `  C )  =  D  <->  ( `' F `  D )  =  C ) )
 
Theoremnvof1o 6536 An involution is a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
 |-  ( ( F  Fn  A  /\  `' F  =  F )  ->  F : A
 -1-1-onto-> A )
 
Theoremnvocnv 6537* The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.)
 |-  ( ( F : A
 --> A  /\  A. x  e.  A  ( F `  ( F `  x ) )  =  x ) 
 ->  `' F  =  F )
 
Theoremfsnex 6538* Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020.)
 |-  ( x  =  ( f `  A ) 
 ->  ( ps  <->  ph ) )   =>    |-  ( A  e.  V  ->  ( E. f
 ( f : { A } --> D  /\  ph )  <->  E. x  e.  D  ps ) )
 
Theoremf1prex 6539* Relate a one-to-one function with a pair as domain and two different variables. (Contributed by Thierry Arnoux, 12-Jul-2020.)
 |-  ( x  =  ( f `  A ) 
 ->  ( ps  <->  ch ) )   &    |-  (
 y  =  ( f `
  B )  ->  ( ch  <->  ph ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  ( E. f ( f : { A ,  B } -1-1-> D  /\  ph )  <->  E. x  e.  D  E. y  e.  D  ( x  =/=  y  /\  ps ) ) )
 
Theoremf1ocnvdm 6540 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A )
 
Theoremf1ocnvfvrneq 6541 If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
 |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
 
Theoremfcof1 6542 An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  ( R  o.  F )  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
 
Theoremfcofo 6543 An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  S : B
 --> A  /\  ( F  o.  S )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
 
Theoremcbvfo 6544* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F `  x )  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( F : A -onto-> B  ->  ( A. x  e.  A  ph  <->  A. y  e.  B  ps ) )
 
Theoremcbvexfo 6545* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
 |-  ( ( F `  x )  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( F : A -onto-> B  ->  ( E. x  e.  A  ph  <->  E. y  e.  B  ps ) )
 
Theoremcocan1 6546 An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F : B -1-1-> C  /\  H : A
 --> B  /\  K : A
 --> B )  ->  (
 ( F  o.  H )  =  ( F  o.  K )  <->  H  =  K ) )
 
Theoremcocan2 6547 A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B )  ->  ( ( H  o.  F )  =  ( K  o.  F ) 
 <->  H  =  K ) )
 
Theoremfcof1oinvd 6548 Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 6551. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
 |-  ( ph  ->  F : A -1-1-onto-> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  ( F  o.  G )  =  (  _I  |`  B )
 )   =>    |-  ( ph  ->  `' F  =  G )
 
Theoremfcof1od 6549 A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 6542 and fcofo 6543. Formerly part of proof of fcof1o 6551. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  ( G  o.  F )  =  (  _I  |`  A ) )   &    |-  ( ph  ->  ( F  o.  G )  =  (  _I  |`  B ) )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theorem2fcoidinvd 6550 Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  ( G  o.  F )  =  (  _I  |`  A ) )   &    |-  ( ph  ->  ( F  o.  G )  =  (  _I  |`  B ) )   =>    |-  ( ph  ->  `' F  =  G )
 
Theoremfcof1o 6551 Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by AV, 15-Dec-2019.)
 |-  ( ( ( F : A --> B  /\  G : B --> A ) 
 /\  ( ( F  o.  G )  =  (  _I  |`  B ) 
 /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
 
Theorem2fvcoidd 6552* Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  A. a  e.  A  ( G `  ( F `
  a ) )  =  a )   =>    |-  ( ph  ->  ( G  o.  F )  =  (  _I  |`  A ) )
 
Theorem2fvidf1od 6553* A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  A. a  e.  A  ( G `  ( F `
  a ) )  =  a )   &    |-  ( ph  ->  A. b  e.  B  ( F `  ( G `
  b ) )  =  b )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theorem2fvidinvd 6554* Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B --> A )   &    |-  ( ph  ->  A. a  e.  A  ( G `  ( F `
  a ) )  =  a )   &    |-  ( ph  ->  A. b  e.  B  ( F `  ( G `
  b ) )  =  b )   =>    |-  ( ph  ->  `' F  =  G )
 
Theoremfoeqcnvco 6555 Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
 |-  ( ( F : A -onto-> B  /\  G : A -onto-> B )  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
 ) )
 
Theoremf1eqcocnv 6556 Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
 |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
 ) )
 
Theoremfveqf1o 6557 Given a bijection  F, produce another bijection  G which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  G  =  ( F  o.  ( (  _I  |`  ( A  \  { C ,  ( `' F `  D ) }
 ) )  u.  { <. C ,  ( `' F `  D )
 >. ,  <. ( `' F `  D ) ,  C >. } ) )   =>    |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B )  ->  ( G : A
 -1-1-onto-> B  /\  ( G `  C )  =  D ) )
 
Theoremfliftrel 6558*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  F  C_  ( R  X.  S ) )
 
Theoremfliftel 6559* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B ) ) )
 
Theoremfliftel1 6560* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ( ph  /\  x  e.  X )  ->  A F B )
 
Theoremfliftcnv 6561* Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
 
Theoremfliftfun 6562* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  y  ->  A  =  C )   &    |-  ( x  =  y  ->  B  =  D )   =>    |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) ) )
 
Theoremfliftfund 6563* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  y  ->  A  =  C )   &    |-  ( x  =  y  ->  B  =  D )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )   =>    |-  ( ph  ->  Fun  F )
 
Theoremfliftfuns 6564* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  (
 [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  =  [_ z  /  x ]_ B ) ) )
 
Theoremfliftf 6565* The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
 
Theoremfliftval 6566* The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  Y  ->  A  =  C )   &    |-  ( x  =  Y  ->  B  =  D )   &    |-  ( ph  ->  Fun 
 F )   =>    |-  ( ( ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
 
Theoremisoeq1 6567 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  G  Isom  R ,  S  ( A ,  B ) ) )
 
Theoremisoeq2 6568 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( R  =  T  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  T ,  S  ( A ,  B ) ) )
 
Theoremisoeq3 6569 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  T  ( A ,  B ) ) )
 
Theoremisoeq4 6570 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  S  ( C ,  B ) ) )
 
Theoremisoeq5 6571 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( B  =  C  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  S  ( A ,  C ) ) )
 
Theoremnfiso 6572 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  F/_ x H   &    |-  F/_ x R   &    |-  F/_ x S   &    |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  H  Isom  R ,  S  ( A ,  B )
 
Theoremisof1o 6573 An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B )
 
Theoremisof1oidb 6574 A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
 |-  ( H : A -1-1-onto-> B  <->  H 
 Isom  _I  ,  _I  ( A ,  B )
 )
 
Theoremisof1oopb 6575 A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
 |-  ( H : A -1-1-onto-> B  <->  H 
 Isom  ( _V  X.  _V ) ,  ( _V  X. 
 _V ) ( A ,  B ) )
 
Theoremisorel 6576 An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( C R D  <->  ( H `  C ) S ( H `  D ) ) )
 
Theoremsoisores 6577* Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015.)
 |-  ( ( ( R  Or  B  /\  S  Or  C )  /\  ( F : B --> C  /\  A  C_  B ) ) 
 ->  ( ( F  |`  A ) 
 Isom  R ,  S  ( A ,  ( F
 " A ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( F `  x ) S ( F `  y ) ) ) )
 
Theoremsoisoi 6578* Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
 |-  ( ( ( R  Or  A  /\  S  Po  B )  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y
 ) ) ) ) 
 ->  H  Isom  R ,  S  ( A ,  B ) )
 
Theoremisoid 6579 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
 |-  (  _I  |`  A ) 
 Isom  R ,  R  ( A ,  A )
 
Theoremisocnv 6580 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
 
Theoremisocnv2 6581 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  `' R ,  `' S ( A ,  B ) )
 
Theoremisocnv3 6582 Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  C  =  ( ( A  X.  A ) 
 \  R )   &    |-  D  =  ( ( B  X.  B )  \  S )   =>    |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  C ,  D  ( A ,  B ) )
 
Theoremisores2 6583 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B ) )
 
Theoremisores1 6584 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
 
Theoremisores3 6585 Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A  /\  X  =  ( H " K ) )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  X ) )
 
Theoremisotr 6586 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
 
Theoremisomin 6587 Isomorphisms preserve minimal elements. Note that  ( `' R " { D } ) is Takeuti and Zaring's idiom for the initial segment  { x  |  x R D }. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A )
 )  ->  ( ( C  i^i  ( `' R " { D } )
 )  =  (/)  <->  ( ( H
 " C )  i^i  ( `' S " { ( H `  D ) } )
 )  =  (/) ) )
 
Theoremisoini 6588 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( H " ( A  i^i  ( `' R " { D } )
 ) )  =  ( B  i^i  ( `' S " { ( H `  D ) }
 ) ) )
 
Theoremisoini2 6589 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
 |-  C  =  ( A  i^i  ( `' R " { X } )
 )   &    |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } )
 )   =>    |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) 
 Isom  R ,  S  ( C ,  D ) )
 
Theoremisofrlem 6590* Lemma for isofr 6592. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  ( H " x )  e.  _V )   =>    |-  ( ph  ->  ( S  Fr  B  ->  R  Fr  A ) )
 
Theoremisoselem 6591* Lemma for isose 6593. (Contributed by Mario Carneiro, 23-Jun-2015.)
 |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  ( H " x )  e.  _V )   =>    |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
 
Theoremisofr 6592 An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
 <->  S  Fr  B ) )
 
Theoremisose 6593 An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se 
 B ) )
 
Theoremisofr2 6594 A weak form of isofr 6592 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  B  e.  V )  ->  ( S  Fr  B  ->  R  Fr  A ) )
 
Theoremisopolem 6595 Lemma for isopo 6596. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A ) )
 
Theoremisopo 6596 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A 
 <->  S  Po  B ) )
 
Theoremisosolem 6597 Lemma for isoso 6598. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A ) )
 
Theoremisoso 6598 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
 <->  S  Or  B ) )
 
Theoremisowe 6599 An isomorphism preserves well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  We  A 
 <->  S  We  B ) )
 
Theoremisowe2 6600* A weak form of isowe 6599 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H " x )  e.  _V )  ->  ( S  We  B  ->  R  We  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >