Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorng Structured version   Visualization version   Unicode version

Theorem isorng 29799
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
Hypotheses
Ref Expression
isorng.0  |-  B  =  ( Base `  R
)
isorng.1  |-  .0.  =  ( 0g `  R )
isorng.2  |-  .x.  =  ( .r `  R )
isorng.3  |-  .<_  =  ( le `  R )
Assertion
Ref Expression
isorng  |-  ( R  e. oRing 
<->  ( R  e.  Ring  /\  R  e. oGrp  /\  A. a  e.  B  A. b  e.  B  (
(  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b ) ) ) )
Distinct variable groups:    a, b, B    R, a, b
Allowed substitution hints:    .x. ( a, b)    .<_ ( a, b)    .0. ( a,
b)

Proof of Theorem isorng
Dummy variables  l 
r  t  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3  |-  ( R  e.  ( Ring  i^i oGrp )  <-> 
( R  e.  Ring  /\  R  e. oGrp ) )
21anbi1i 731 . 2  |-  ( ( R  e.  ( Ring 
i^i oGrp )  /\  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) )  <->  ( ( R  e.  Ring  /\  R  e. oGrp )  /\  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
3 fvexd 6203 . . . . 5  |-  ( r  =  R  ->  ( .r `  r )  e. 
_V )
4 simpr 477 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
t  =  ( .r
`  r ) )
5 simpl 473 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
r  =  R )
65fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( .r `  r
)  =  ( .r
`  R ) )
7 isorng.2 . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
86, 7syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( .r `  r
)  =  .x.  )
94, 8eqtrd 2656 . . . . . . . . . 10  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
t  =  .x.  )
109oveqd 6667 . . . . . . . . 9  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( a t b )  =  ( a 
.x.  b ) )
1110breq2d 4665 . . . . . . . 8  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
(  .0.  l ( a t b )  <-> 
.0.  l ( a 
.x.  b ) ) )
1211imbi2d 330 . . . . . . 7  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a t b ) )  <->  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) ) ) )
13122ralbidv 2989 . . . . . 6  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a t b ) )  <->  A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) ) ) )
1413sbcbidv 3490 . . . . 5  |-  ( ( r  =  R  /\  t  =  ( .r `  r ) )  -> 
( [. ( le `  r )  /  l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a t b ) )  <->  [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) ) ) )
153, 14sbcied 3472 . . . 4  |-  ( r  =  R  ->  ( [. ( .r `  r
)  /  t ]. [. ( le `  r
)  /  l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a t b ) )  <->  [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) ) ) )
16 fvexd 6203 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
17 simpr 477 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
v  =  ( Base `  r ) )
18 fveq2 6191 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
19 isorng.0 . . . . . . . . . . . . 13  |-  B  =  ( Base `  R
)
2018, 19syl6eqr 2674 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( Base `  r )  =  B )
2120adantr 481 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
( Base `  r )  =  B )
2217, 21eqtrd 2656 . . . . . . . . . 10  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
v  =  B )
23 raleq 3138 . . . . . . . . . . 11  |-  ( v  =  B  ->  ( A. b  e.  v 
( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  A. b  e.  B  ( (
z l a  /\  z l b )  ->  z l ( a t b ) ) ) )
2423raleqbi1dv 3146 . . . . . . . . . 10  |-  ( v  =  B  ->  ( A. a  e.  v  A. b  e.  v 
( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  A. a  e.  B  A. b  e.  B  ( (
z l a  /\  z l b )  ->  z l ( a t b ) ) ) )
2522, 24syl 17 . . . . . . . . 9  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
( A. a  e.  v  A. b  e.  v  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) )  <->  A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) ) ) )
2625sbcbidv 3490 . . . . . . . 8  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
( [. ( le `  r )  /  l ]. A. a  e.  v 
A. b  e.  v  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) ) )
2726sbcbidv 3490 . . . . . . 7  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
( [. ( .r `  r )  /  t ]. [. ( le `  r )  /  l ]. A. a  e.  v 
A. b  e.  v  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) ) )
2827sbcbidv 3490 . . . . . 6  |-  ( ( r  =  R  /\  v  =  ( Base `  r ) )  -> 
( [. ( 0g `  r )  /  z ]. [. ( .r `  r )  /  t ]. [. ( le `  r )  /  l ]. A. a  e.  v 
A. b  e.  v  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( 0g
`  r )  / 
z ]. [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) ) )
2916, 28sbcied 3472 . . . . 5  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  v ]. [. ( 0g `  r
)  /  z ]. [. ( .r `  r
)  /  t ]. [. ( le `  r
)  /  l ]. A. a  e.  v  A. b  e.  v 
( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( 0g
`  r )  / 
z ]. [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) ) )
30 fvexd 6203 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  e. 
_V )
31 simpr 477 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
z  =  ( 0g
`  r ) )
32 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
33 isorng.1 . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  R )
3432, 33syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
3534adantr 481 . . . . . . . . . . . . 13  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( 0g `  r
)  =  .0.  )
3631, 35eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
z  =  .0.  )
3736breq1d 4663 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( z l a  <-> 
.0.  l a ) )
3836breq1d 4663 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( z l b  <-> 
.0.  l b ) )
3937, 38anbi12d 747 . . . . . . . . . 10  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( ( z l a  /\  z l b )  <->  (  .0.  l a  /\  .0.  l b ) ) )
4036breq1d 4663 . . . . . . . . . 10  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( z l ( a t b )  <-> 
.0.  l ( a t b ) ) )
4139, 40imbi12d 334 . . . . . . . . 9  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) )  <-> 
( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a t b ) ) ) )
42412ralbidv 2989 . . . . . . . 8  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) )  <->  A. a  e.  B  A. b  e.  B  ( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a t b ) ) ) )
4342sbcbidv 3490 . . . . . . 7  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( [. ( le `  r )  /  l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a t b ) ) ) )
4443sbcbidv 3490 . . . . . 6  |-  ( ( r  =  R  /\  z  =  ( 0g `  r ) )  -> 
( [. ( .r `  r )  /  t ]. [. ( le `  r )  /  l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a t b ) ) ) )
4530, 44sbcied 3472 . . . . 5  |-  ( r  =  R  ->  ( [. ( 0g `  r
)  /  z ]. [. ( .r `  r
)  /  t ]. [. ( le `  r
)  /  l ]. A. a  e.  B  A. b  e.  B  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a t b ) ) ) )
4629, 45bitr2d 269 . . . 4  |-  ( r  =  R  ->  ( [. ( .r `  r
)  /  t ]. [. ( le `  r
)  /  l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a t b ) )  <->  [. ( Base `  r )  /  v ]. [. ( 0g `  r )  /  z ]. [. ( .r `  r )  /  t ]. [. ( le `  r )  /  l ]. A. a  e.  v 
A. b  e.  v  ( ( z l a  /\  z l b )  ->  z
l ( a t b ) ) ) )
47 fvexd 6203 . . . . 5  |-  ( r  =  R  ->  ( le `  r )  e. 
_V )
48 simpr 477 . . . . . . . . . 10  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
l  =  ( le
`  r ) )
49 simpl 473 . . . . . . . . . . . 12  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
r  =  R )
5049fveq2d 6195 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
( le `  r
)  =  ( le
`  R ) )
51 isorng.3 . . . . . . . . . . 11  |-  .<_  =  ( le `  R )
5250, 51syl6eqr 2674 . . . . . . . . . 10  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
( le `  r
)  =  .<_  )
5348, 52eqtrd 2656 . . . . . . . . 9  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
l  =  .<_  )
5453breqd 4664 . . . . . . . 8  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
(  .0.  l a  <-> 
.0.  .<_  a ) )
5553breqd 4664 . . . . . . . 8  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
(  .0.  l b  <-> 
.0.  .<_  b ) )
5654, 55anbi12d 747 . . . . . . 7  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
( (  .0.  l
a  /\  .0.  l
b )  <->  (  .0.  .<_  a  /\  .0.  .<_  b ) ) )
5753breqd 4664 . . . . . . 7  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
(  .0.  l ( a  .x.  b )  <-> 
.0.  .<_  ( a  .x.  b ) ) )
5856, 57imbi12d 334 . . . . . 6  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
( ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) )  <->  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
59582ralbidv 2989 . . . . 5  |-  ( ( r  =  R  /\  l  =  ( le `  r ) )  -> 
( A. a  e.  B  A. b  e.  B  ( (  .0.  l a  /\  .0.  l b )  ->  .0.  l ( a  .x.  b ) )  <->  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
6047, 59sbcied 3472 . . . 4  |-  ( r  =  R  ->  ( [. ( le `  r
)  /  l ]. A. a  e.  B  A. b  e.  B  ( (  .0.  l
a  /\  .0.  l
b )  ->  .0.  l ( a  .x.  b ) )  <->  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
6115, 46, 603bitr3d 298 . . 3  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  v ]. [. ( 0g `  r
)  /  z ]. [. ( .r `  r
)  /  t ]. [. ( le `  r
)  /  l ]. A. a  e.  v  A. b  e.  v 
( ( z l a  /\  z l b )  ->  z
l ( a t b ) )  <->  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
62 df-orng 29797 . . 3  |- oRing  =  {
r  e.  ( Ring 
i^i oGrp )  |  [. ( Base `  r )  / 
v ]. [. ( 0g
`  r )  / 
z ]. [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  v  A. b  e.  v  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) }
6361, 62elrab2 3366 . 2  |-  ( R  e. oRing 
<->  ( R  e.  (
Ring  i^i oGrp )  /\  A. a  e.  B  A. b  e.  B  (
(  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b ) ) ) )
64 df-3an 1039 . 2  |-  ( ( R  e.  Ring  /\  R  e. oGrp  /\  A. a  e.  B  A. b  e.  B  ( (  .0. 
.<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a 
.x.  b ) ) )  <->  ( ( R  e.  Ring  /\  R  e. oGrp
)  /\  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) ) )
652, 63, 643bitr4i 292 1  |-  ( R  e. oRing 
<->  ( R  e.  Ring  /\  R  e. oGrp  /\  A. a  e.  B  A. b  e.  B  (
(  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    i^i cin 3573   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   lecple 15948   0gc0g 16100   Ringcrg 18547  oGrpcogrp 29698  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-orng 29797
This theorem is referenced by:  orngring  29800  orngogrp  29801  orngmul  29803  suborng  29815  reofld  29840
  Copyright terms: Public domain W3C validator