Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmul Structured version   Visualization version   Unicode version

Theorem orngmul 29803
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0  |-  B  =  ( Base `  R
)
orngmul.1  |-  .<_  =  ( le `  R )
orngmul.2  |-  .0.  =  ( 0g `  R )
orngmul.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
orngmul  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  .0.  .<_  ( X 
.x.  Y ) )

Proof of Theorem orngmul
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1088 . 2  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  .0.  .<_  X )
2 simp3r 1090 . 2  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  .0.  .<_  Y )
3 simp2l 1087 . . 3  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  X  e.  B
)
4 simp3l 1089 . . 3  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  Y  e.  B
)
5 orngmul.0 . . . . . 6  |-  B  =  ( Base `  R
)
6 orngmul.2 . . . . . 6  |-  .0.  =  ( 0g `  R )
7 orngmul.3 . . . . . 6  |-  .x.  =  ( .r `  R )
8 orngmul.1 . . . . . 6  |-  .<_  =  ( le `  R )
95, 6, 7, 8isorng 29799 . . . . 5  |-  ( R  e. oRing 
<->  ( R  e.  Ring  /\  R  e. oGrp  /\  A. a  e.  B  A. b  e.  B  (
(  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b ) ) ) )
109simp3bi 1078 . . . 4  |-  ( R  e. oRing  ->  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a 
.x.  b ) ) )
11103ad2ant1 1082 . . 3  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a 
.x.  b ) ) )
12 breq2 4657 . . . . . 6  |-  ( a  =  X  ->  (  .0.  .<_  a  <->  .0.  .<_  X ) )
1312anbi1d 741 . . . . 5  |-  ( a  =  X  ->  (
(  .0.  .<_  a  /\  .0.  .<_  b )  <->  (  .0.  .<_  X  /\  .0.  .<_  b ) ) )
14 oveq1 6657 . . . . . 6  |-  ( a  =  X  ->  (
a  .x.  b )  =  ( X  .x.  b ) )
1514breq2d 4665 . . . . 5  |-  ( a  =  X  ->  (  .0.  .<_  ( a  .x.  b )  <->  .0.  .<_  ( X 
.x.  b ) ) )
1613, 15imbi12d 334 . . . 4  |-  ( a  =  X  ->  (
( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a 
.x.  b ) )  <-> 
( (  .0.  .<_  X  /\  .0.  .<_  b )  ->  .0.  .<_  ( X 
.x.  b ) ) ) )
17 breq2 4657 . . . . . 6  |-  ( b  =  Y  ->  (  .0.  .<_  b  <->  .0.  .<_  Y ) )
1817anbi2d 740 . . . . 5  |-  ( b  =  Y  ->  (
(  .0.  .<_  X  /\  .0.  .<_  b )  <->  (  .0.  .<_  X  /\  .0.  .<_  Y ) ) )
19 oveq2 6658 . . . . . 6  |-  ( b  =  Y  ->  ( X  .x.  b )  =  ( X  .x.  Y
) )
2019breq2d 4665 . . . . 5  |-  ( b  =  Y  ->  (  .0.  .<_  ( X  .x.  b )  <->  .0.  .<_  ( X 
.x.  Y ) ) )
2118, 20imbi12d 334 . . . 4  |-  ( b  =  Y  ->  (
( (  .0.  .<_  X  /\  .0.  .<_  b )  ->  .0.  .<_  ( X 
.x.  b ) )  <-> 
( (  .0.  .<_  X  /\  .0.  .<_  Y )  ->  .0.  .<_  ( X 
.x.  Y ) ) ) )
2216, 21rspc2va 3323 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. a  e.  B  A. b  e.  B  ( (  .0.  .<_  a  /\  .0.  .<_  b )  ->  .0.  .<_  ( a  .x.  b
) ) )  -> 
( (  .0.  .<_  X  /\  .0.  .<_  Y )  ->  .0.  .<_  ( X 
.x.  Y ) ) )
233, 4, 11, 22syl21anc 1325 . 2  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  ( (  .0. 
.<_  X  /\  .0.  .<_  Y )  ->  .0.  .<_  ( X 
.x.  Y ) ) )
241, 2, 23mp2and 715 1  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X )  /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  .0.  .<_  ( X 
.x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   lecple 15948   0gc0g 16100   Ringcrg 18547  oGrpcogrp 29698  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-orng 29797
This theorem is referenced by:  orngsqr  29804  ornglmulle  29805  orngrmulle  29806  orngmullt  29809  suborng  29815
  Copyright terms: Public domain W3C validator