Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suborng Structured version   Visualization version   Unicode version

Theorem suborng 29815
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
suborng  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e. oRing )

Proof of Theorem suborng
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e.  Ring )
2 ringgrp 18552 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Grp )
32adantl 482 . . 3  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e.  Grp )
4 orngogrp 29801 . . . . 5  |-  ( R  e. oRing  ->  R  e. oGrp )
5 isogrp 29702 . . . . . 6  |-  ( R  e. oGrp 
<->  ( R  e.  Grp  /\  R  e. oMnd ) )
65simprbi 480 . . . . 5  |-  ( R  e. oGrp  ->  R  e. oMnd )
74, 6syl 17 . . . 4  |-  ( R  e. oRing  ->  R  e. oMnd )
8 ringmnd 18556 . . . 4  |-  ( ( Rs  A )  e.  Ring  -> 
( Rs  A )  e.  Mnd )
9 submomnd 29710 . . . 4  |-  ( ( R  e. oMnd  /\  ( Rs  A )  e.  Mnd )  ->  ( Rs  A )  e. oMnd )
107, 8, 9syl2an 494 . . 3  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e. oMnd )
11 isogrp 29702 . . 3  |-  ( ( Rs  A )  e. oGrp  <->  ( ( Rs  A )  e.  Grp  /\  ( Rs  A )  e. oMnd )
)
123, 10, 11sylanbrc 698 . 2  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e. oGrp )
13 simp-4l 806 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  R  e. oRing )
14 reldmress 15926 . . . . . . . . . . . . . . 15  |-  Rel  doms
1514ovprc2 6685 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  ( Rs  A )  =  (/) )
1615fveq2d 6195 . . . . . . . . . . . . 13  |-  ( -.  A  e.  _V  ->  (
Base `  ( Rs  A
) )  =  (
Base `  (/) ) )
1716adantl 482 . . . . . . . . . . . 12  |-  ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Rs  A ) )  =  ( Base `  (/) ) )
18 base0 15912 . . . . . . . . . . . 12  |-  (/)  =  (
Base `  (/) )
1917, 18syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Rs  A ) )  =  (/) )
20 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
21 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  ( Rs  A ) )  =  ( 1r
`  ( Rs  A ) )
2220, 21ringidcl 18568 . . . . . . . . . . . . . 14  |-  ( ( Rs  A )  e.  Ring  -> 
( 1r `  ( Rs  A ) )  e.  ( Base `  ( Rs  A ) ) )
23 ne0i 3921 . . . . . . . . . . . . . 14  |-  ( ( 1r `  ( Rs  A ) )  e.  (
Base `  ( Rs  A
) )  ->  ( Base `  ( Rs  A ) )  =/=  (/) )
2422, 23syl 17 . . . . . . . . . . . . 13  |-  ( ( Rs  A )  e.  Ring  -> 
( Base `  ( Rs  A
) )  =/=  (/) )
2524ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Rs  A ) )  =/=  (/) )
2625neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  -.  A  e. 
_V )  ->  -.  ( Base `  ( Rs  A
) )  =  (/) )
2719, 26condan 835 . . . . . . . . . 10  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  A  e.  _V )
28 eqid 2622 . . . . . . . . . . . 12  |-  ( Rs  A )  =  ( Rs  A )
29 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
3028, 29ressbas 15930 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  i^i  ( Base `  R
) )  =  (
Base `  ( Rs  A
) ) )
31 inss2 3834 . . . . . . . . . . 11  |-  ( A  i^i  ( Base `  R
) )  C_  ( Base `  R )
3230, 31syl6eqssr 3656 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R ) )
3327, 32syl 17 . . . . . . . . 9  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R )
)
3433ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R )
)
35 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  a  e.  ( Base `  ( Rs  A
) ) )
3634, 35sseldd 3604 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  a  e.  ( Base `  R )
)
37 simprl 794 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a )
38 orngring 29800 . . . . . . . . . . . . . . . 16  |-  ( R  e. oRing  ->  R  e.  Ring )
39 ringgrp 18552 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4038, 39syl 17 . . . . . . . . . . . . . . 15  |-  ( R  e. oRing  ->  R  e.  Grp )
4140adantr 481 . . . . . . . . . . . . . 14  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  R  e.  Grp )
4229ressinbas 15936 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  _V  ->  ( Rs  A )  =  ( Rs  ( A  i^i  ( Base `  R ) ) ) )
4330oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  _V  ->  ( Rs  ( A  i^i  ( Base `  R ) ) )  =  ( Rs  (
Base `  ( Rs  A
) ) ) )
4442, 43eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  ( Rs  A )  =  ( Rs  ( Base `  ( Rs  A ) ) ) )
4527, 44syl 17 . . . . . . . . . . . . . . 15  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  =  ( Rs  ( Base `  ( Rs  A ) ) ) )
4645, 3eqeltrrd 2702 . . . . . . . . . . . . . 14  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  ( Base `  ( Rs  A ) ) )  e.  Grp )
4729issubg 17594 . . . . . . . . . . . . . 14  |-  ( (
Base `  ( Rs  A
) )  e.  (SubGrp `  R )  <->  ( R  e.  Grp  /\  ( Base `  ( Rs  A ) )  C_  ( Base `  R )  /\  ( Rs  ( Base `  ( Rs  A ) ) )  e.  Grp ) )
4841, 33, 46, 47syl3anbrc 1246 . . . . . . . . . . . . 13  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Base `  ( Rs  A ) )  e.  (SubGrp `  R )
)
49 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Rs  (
Base `  ( Rs  A
) ) )  =  ( Rs  ( Base `  ( Rs  A ) ) )
50 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 0g
`  R )  =  ( 0g `  R
)
5149, 50subg0 17600 . . . . . . . . . . . . 13  |-  ( (
Base `  ( Rs  A
) )  e.  (SubGrp `  R )  ->  ( 0g `  R )  =  ( 0g `  ( Rs  ( Base `  ( Rs  A
) ) ) ) )
5248, 51syl 17 . . . . . . . . . . . 12  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( 0g `  R )  =  ( 0g `  ( Rs  (
Base `  ( Rs  A
) ) ) ) )
5345fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( 0g `  ( Rs  A ) )  =  ( 0g `  ( Rs  ( Base `  ( Rs  A
) ) ) ) )
5452, 53eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( 0g `  R )  =  ( 0g `  ( Rs  A ) ) )
5554ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  ( 0g `  R )  =  ( 0g `  ( Rs  A ) ) )
5627ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  A  e.  _V )
57 eqid 2622 . . . . . . . . . . . 12  |-  ( le
`  R )  =  ( le `  R
)
5828, 57ressle 16059 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( le `  R )  =  ( le `  ( Rs  A ) ) )
5956, 58syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  ( le `  R )  =  ( le `  ( Rs  A ) ) )
60 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  a  =  a )
6155, 59, 60breq123d 4667 . . . . . . . . 9  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  ( ( 0g
`  R ) ( le `  R ) a  <->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a ) )
6261adantr 481 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( ( 0g `  R ) ( le `  R ) a  <->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a ) )
6337, 62mpbird 247 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  R ) ( le
`  R ) a )
64 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  b  e.  ( Base `  ( Rs  A
) ) )
6534, 64sseldd 3604 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  b  e.  ( Base `  R )
)
66 simprr 796 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b )
67 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  b  =  b )
6855, 59, 67breq123d 4667 . . . . . . . . 9  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  ( ( 0g
`  R ) ( le `  R ) b  <->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )
6968adantr 481 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( ( 0g `  R ) ( le `  R ) b  <->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )
7066, 69mpbird 247 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  R ) ( le
`  R ) b )
71 eqid 2622 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
7229, 57, 50, 71orngmul 29803 . . . . . . 7  |-  ( ( R  e. oRing  /\  (
a  e.  ( Base `  R )  /\  ( 0g `  R ) ( le `  R ) a )  /\  (
b  e.  ( Base `  R )  /\  ( 0g `  R ) ( le `  R ) b ) )  -> 
( 0g `  R
) ( le `  R ) ( a ( .r `  R
) b ) )
7313, 36, 63, 65, 70, 72syl122anc 1335 . . . . . 6  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  R ) ( le
`  R ) ( a ( .r `  R ) b ) )
7455adantr 481 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  R )  =  ( 0g `  ( Rs  A ) ) )
7559adantr 481 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( le `  R )  =  ( le `  ( Rs  A ) ) )
7656adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  A  e.  _V )
7728, 71ressmulr 16006 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( .r `  R )  =  ( .r `  ( Rs  A ) ) )
7876, 77syl 17 . . . . . . . 8  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( .r `  R )  =  ( .r `  ( Rs  A ) ) )
7978oveqd 6667 . . . . . . 7  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( a
( .r `  R
) b )  =  ( a ( .r
`  ( Rs  A ) ) b ) )
8074, 75, 79breq123d 4667 . . . . . 6  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( ( 0g `  R ) ( le `  R ) ( a ( .r
`  R ) b )  <->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) ) )
8173, 80mpbid 222 . . . . 5  |-  ( ( ( ( ( R  e. oRing  /\  ( Rs  A
)  e.  Ring )  /\  a  e.  ( Base `  ( Rs  A ) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  /\  ( ( 0g
`  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b ) )  ->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) )
8281ex 450 . . . 4  |-  ( ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  a  e.  (
Base `  ( Rs  A
) ) )  /\  b  e.  ( Base `  ( Rs  A ) ) )  ->  ( ( ( 0g `  ( Rs  A ) ) ( le
`  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) b )  ->  ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) ) )
8382anasss 679 . . 3  |-  ( ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  /\  ( a  e.  ( Base `  ( Rs  A ) )  /\  b  e.  ( Base `  ( Rs  A ) ) ) )  ->  ( (
( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le
`  ( Rs  A ) ) b )  -> 
( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) ) )
8483ralrimivva 2971 . 2  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  A. a  e.  (
Base `  ( Rs  A
) ) A. b  e.  ( Base `  ( Rs  A ) ) ( ( ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le
`  ( Rs  A ) ) b )  -> 
( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) ) )
85 eqid 2622 . . 3  |-  ( 0g
`  ( Rs  A ) )  =  ( 0g
`  ( Rs  A ) )
86 eqid 2622 . . 3  |-  ( .r
`  ( Rs  A ) )  =  ( .r
`  ( Rs  A ) )
87 eqid 2622 . . 3  |-  ( le
`  ( Rs  A ) )  =  ( le
`  ( Rs  A ) )
8820, 85, 86, 87isorng 29799 . 2  |-  ( ( Rs  A )  e. oRing  <->  ( ( Rs  A )  e.  Ring  /\  ( Rs  A )  e. oGrp  /\  A. a  e.  ( Base `  ( Rs  A ) ) A. b  e.  ( Base `  ( Rs  A ) ) ( ( ( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) a  /\  ( 0g `  ( Rs  A ) ) ( le
`  ( Rs  A ) ) b )  -> 
( 0g `  ( Rs  A ) ) ( le `  ( Rs  A ) ) ( a ( .r `  ( Rs  A ) ) b ) ) ) )
891, 12, 84, 88syl3anbrc 1246 1  |-  ( ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e. oRing )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   lecple 15948   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422  SubGrpcsubg 17588   1rcur 18501   Ringcrg 18547  oMndcomnd 29697  oGrpcogrp 29698  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-ple 15961  df-0g 16102  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-omnd 29699  df-ogrp 29700  df-orng 29797
This theorem is referenced by:  subofld  29816
  Copyright terms: Public domain W3C validator