Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngisom Structured version   Visualization version   Unicode version

Theorem isrngisom 41896
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngisom  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( F  e.  ( R RngIsom  S )  <->  ( F  e.  ( R RngHomo  S )  /\  `' F  e.  ( S RngHomo  R ) ) ) )

Proof of Theorem isrngisom
Dummy variables  f 
r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngisom 41888 . . . . 5  |- RngIsom  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RngHomo 
s )  |  `' f  e.  ( s RngHomo  r ) } )
21a1i 11 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  -> RngIsom 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RngHomo  s )  |  `' f  e.  ( s RngHomo  r ) } ) )
3 oveq12 6659 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RngHomo  s )  =  ( R RngHomo  S
) )
43adantl 482 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( r  =  R  /\  s  =  S ) )  -> 
( r RngHomo  s )  =  ( R RngHomo  S
) )
5 oveq12 6659 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RngHomo  r )  =  ( S RngHomo  R
) )
65ancoms 469 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RngHomo  r )  =  ( S RngHomo  R
) )
76adantl 482 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( r  =  R  /\  s  =  S ) )  -> 
( s RngHomo  r )  =  ( S RngHomo  R
) )
87eleq2d 2687 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( r  =  R  /\  s  =  S ) )  -> 
( `' f  e.  ( s RngHomo  r )  <->  `' f  e.  ( S RngHomo  R ) ) )
94, 8rabeqbidv 3195 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RngHomo  s )  |  `' f  e.  (
s RngHomo  r ) }  =  { f  e.  ( R RngHomo  S )  |  `' f  e.  ( S RngHomo  R ) } )
10 elex 3212 . . . . 5  |-  ( R  e.  V  ->  R  e.  _V )
1110adantr 481 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  R  e.  _V )
12 elex 3212 . . . . 5  |-  ( S  e.  W  ->  S  e.  _V )
1312adantl 482 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  S  e.  _V )
14 ovex 6678 . . . . . 6  |-  ( R RngHomo  S )  e.  _V
1514rabex 4813 . . . . 5  |-  { f  e.  ( R RngHomo  S
)  |  `' f  e.  ( S RngHomo  R
) }  e.  _V
1615a1i 11 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  { f  e.  ( R RngHomo  S )  |  `' f  e.  ( S RngHomo  R ) }  e.  _V )
172, 9, 11, 13, 16ovmpt2d 6788 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R RngIsom  S )  =  { f  e.  ( R RngHomo  S )  |  `' f  e.  ( S RngHomo  R ) } )
1817eleq2d 2687 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( F  e.  ( R RngIsom  S )  <->  F  e.  { f  e.  ( R RngHomo  S )  |  `' f  e.  ( S RngHomo  R ) } ) )
19 cnveq 5296 . . . 4  |-  ( f  =  F  ->  `' f  =  `' F
)
2019eleq1d 2686 . . 3  |-  ( f  =  F  ->  ( `' f  e.  ( S RngHomo  R )  <->  `' F  e.  ( S RngHomo  R )
) )
2120elrab 3363 . 2  |-  ( F  e.  { f  e.  ( R RngHomo  S )  |  `' f  e.  ( S RngHomo  R ) }  <->  ( F  e.  ( R RngHomo  S )  /\  `' F  e.  ( S RngHomo  R ) ) )
2218, 21syl6bb 276 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( F  e.  ( R RngIsom  S )  <->  ( F  e.  ( R RngHomo  S )  /\  `' F  e.  ( S RngHomo  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   `'ccnv 5113  (class class class)co 6650    |-> cmpt2 6652   RngHomo crngh 41885   RngIsom crngs 41886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rngisom 41888
This theorem is referenced by:  isrngim  41904  rngcinv  41981  rngcinvALTV  41993
  Copyright terms: Public domain W3C validator