| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrngo | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a (unital) ring." Definition of ring with unit in [Schechter] p. 187. (Contributed by Jeff Hankins, 21-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isring.1 |
|
| Ref | Expression |
|---|---|
| isrngo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. . . 4
| |
| 2 | relrngo 33695 |
. . . . 5
| |
| 3 | 2 | brrelexi 5158 |
. . . 4
|
| 4 | 1, 3 | sylbir 225 |
. . 3
|
| 5 | 4 | a1i 11 |
. 2
|
| 6 | elex 3212 |
. . . 4
| |
| 7 | 6 | ad2antrr 762 |
. . 3
|
| 8 | 7 | a1i 11 |
. 2
|
| 9 | df-rngo 33694 |
. . . . 5
| |
| 10 | 9 | eleq2i 2693 |
. . . 4
|
| 11 | simpl 473 |
. . . . . . . 8
| |
| 12 | 11 | eleq1d 2686 |
. . . . . . 7
|
| 13 | simpr 477 |
. . . . . . . 8
| |
| 14 | 11 | rneqd 5353 |
. . . . . . . . . 10
|
| 15 | isring.1 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . . 9
|
| 17 | 16 | sqxpeqd 5141 |
. . . . . . . 8
|
| 18 | 13, 17, 16 | feq123d 6034 |
. . . . . . 7
|
| 19 | 12, 18 | anbi12d 747 |
. . . . . 6
|
| 20 | 13 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 21 | eqidd 2623 |
. . . . . . . . . . . . 13
| |
| 22 | 13, 20, 21 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 23 | eqidd 2623 |
. . . . . . . . . . . . 13
| |
| 24 | 13 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 25 | 13, 23, 24 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 27 | 11 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 28 | 13, 23, 27 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 29 | 13 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 30 | 11, 20, 29 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 31 | 28, 30 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 32 | 11 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 33 | 13, 32, 21 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 34 | 11, 29, 24 | oveq123d 6671 |
. . . . . . . . . . . 12
|
| 35 | 33, 34 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 36 | 26, 31, 35 | 3anbi123d 1399 |
. . . . . . . . . 10
|
| 37 | 16, 36 | raleqbidv 3152 |
. . . . . . . . 9
|
| 38 | 16, 37 | raleqbidv 3152 |
. . . . . . . 8
|
| 39 | 16, 38 | raleqbidv 3152 |
. . . . . . 7
|
| 40 | 20 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 41 | 13 | oveqd 6667 |
. . . . . . . . . . 11
|
| 42 | 41 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 43 | 40, 42 | anbi12d 747 |
. . . . . . . . 9
|
| 44 | 16, 43 | raleqbidv 3152 |
. . . . . . . 8
|
| 45 | 16, 44 | rexeqbidv 3153 |
. . . . . . 7
|
| 46 | 39, 45 | anbi12d 747 |
. . . . . 6
|
| 47 | 19, 46 | anbi12d 747 |
. . . . 5
|
| 48 | 47 | opelopabga 4988 |
. . . 4
|
| 49 | 10, 48 | syl5bb 272 |
. . 3
|
| 50 | 49 | expcom 451 |
. 2
|
| 51 | 5, 8, 50 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-rngo 33694 |
| This theorem is referenced by: isrngod 33697 rngoi 33698 |
| Copyright terms: Public domain | W3C validator |