| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrngod | Structured version Visualization version Unicode version | ||
| Description: Conditions that determine a ring. (Changed label from isringd 18585 to isrngod 33697-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isringod.1 |
|
| isringod.2 |
|
| isringod.3 |
|
| isringod.4 |
|
| isringod.5 |
|
| isringod.6 |
|
| isringod.7 |
|
| isringod.8 |
|
| isringod.9 |
|
| Ref | Expression |
|---|---|
| isrngod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringod.1 |
. . 3
| |
| 2 | isringod.3 |
. . . 4
| |
| 3 | isringod.2 |
. . . . . 6
| |
| 4 | 3 | sqxpeqd 5141 |
. . . . 5
|
| 5 | 4, 3 | feq23d 6040 |
. . . 4
|
| 6 | 2, 5 | mpbid 222 |
. . 3
|
| 7 | isringod.4 |
. . . . . . 7
| |
| 8 | isringod.5 |
. . . . . . 7
| |
| 9 | isringod.6 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | 3jca 1242 |
. . . . . 6
|
| 11 | 10 | ralrimivvva 2972 |
. . . . 5
|
| 12 | 3 | raleqdv 3144 |
. . . . . . 7
|
| 13 | 3, 12 | raleqbidv 3152 |
. . . . . 6
|
| 14 | 3, 13 | raleqbidv 3152 |
. . . . 5
|
| 15 | 11, 14 | mpbid 222 |
. . . 4
|
| 16 | isringod.7 |
. . . . . 6
| |
| 17 | isringod.8 |
. . . . . . . 8
| |
| 18 | isringod.9 |
. . . . . . . 8
| |
| 19 | 17, 18 | jca 554 |
. . . . . . 7
|
| 20 | 19 | ralrimiva 2966 |
. . . . . 6
|
| 21 | oveq1 6657 |
. . . . . . . . . 10
| |
| 22 | 21 | eqeq1d 2624 |
. . . . . . . . 9
|
| 23 | oveq2 6658 |
. . . . . . . . . 10
| |
| 24 | 23 | eqeq1d 2624 |
. . . . . . . . 9
|
| 25 | 22, 24 | anbi12d 747 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2986 |
. . . . . . 7
|
| 27 | 26 | rspcev 3309 |
. . . . . 6
|
| 28 | 16, 20, 27 | syl2anc 693 |
. . . . 5
|
| 29 | 3 | raleqdv 3144 |
. . . . . 6
|
| 30 | 3, 29 | rexeqbidv 3153 |
. . . . 5
|
| 31 | 28, 30 | mpbid 222 |
. . . 4
|
| 32 | 15, 31 | jca 554 |
. . 3
|
| 33 | 1, 6, 32 | jca31 557 |
. 2
|
| 34 | rnexg 7098 |
. . . . . 6
| |
| 35 | 1, 34 | syl 17 |
. . . . 5
|
| 36 | xpexg 6960 |
. . . . 5
| |
| 37 | 35, 35, 36 | syl2anc 693 |
. . . 4
|
| 38 | fex 6490 |
. . . 4
| |
| 39 | 6, 37, 38 | syl2anc 693 |
. . 3
|
| 40 | eqid 2622 |
. . . 4
| |
| 41 | 40 | isrngo 33696 |
. . 3
|
| 42 | 39, 41 | syl 17 |
. 2
|
| 43 | 33, 42 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-rngo 33694 |
| This theorem is referenced by: iscringd 33797 |
| Copyright terms: Public domain | W3C validator |