Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngod Structured version   Visualization version   Unicode version

Theorem isrngod 33697
Description: Conditions that determine a ring. (Changed label from isringd 18585 to isrngod 33697-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1  |-  ( ph  ->  G  e.  AbelOp )
isringod.2  |-  ( ph  ->  X  =  ran  G
)
isringod.3  |-  ( ph  ->  H : ( X  X.  X ) --> X )
isringod.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x H y ) H z )  =  ( x H ( y H z ) ) )
isringod.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
isringod.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )
isringod.7  |-  ( ph  ->  U  e.  X )
isringod.8  |-  ( (
ph  /\  y  e.  X )  ->  ( U H y )  =  y )
isringod.9  |-  ( (
ph  /\  y  e.  X )  ->  (
y H U )  =  y )
Assertion
Ref Expression
isrngod  |-  ( ph  -> 
<. G ,  H >.  e.  RingOps )
Distinct variable groups:    ph, x, y, z    x, G, y, z    x, H, y, z    x, X, y, z    x, U, y
Allowed substitution hint:    U( z)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3  |-  ( ph  ->  G  e.  AbelOp )
2 isringod.3 . . . 4  |-  ( ph  ->  H : ( X  X.  X ) --> X )
3 isringod.2 . . . . . 6  |-  ( ph  ->  X  =  ran  G
)
43sqxpeqd 5141 . . . . 5  |-  ( ph  ->  ( X  X.  X
)  =  ( ran 
G  X.  ran  G
) )
54, 3feq23d 6040 . . . 4  |-  ( ph  ->  ( H : ( X  X.  X ) --> X  <->  H : ( ran 
G  X.  ran  G
) --> ran  G )
)
62, 5mpbid 222 . . 3  |-  ( ph  ->  H : ( ran 
G  X.  ran  G
) --> ran  G )
7 isringod.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x H y ) H z )  =  ( x H ( y H z ) ) )
8 isringod.5 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
9 isringod.6 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )
107, 8, 93jca 1242 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
1110ralrimivvva 2972 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
123raleqdv 3144 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
133, 12raleqbidv 3152 . . . . . 6  |-  ( ph  ->  ( A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
143, 13raleqbidv 3152 . . . . 5  |-  ( ph  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
1511, 14mpbid 222 . . . 4  |-  ( ph  ->  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
16 isringod.7 . . . . . 6  |-  ( ph  ->  U  e.  X )
17 isringod.8 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X )  ->  ( U H y )  =  y )
18 isringod.9 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X )  ->  (
y H U )  =  y )
1917, 18jca 554 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  (
( U H y )  =  y  /\  ( y H U )  =  y ) )
2019ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) )
21 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  U  ->  (
x H y )  =  ( U H y ) )
2221eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  U  ->  (
( x H y )  =  y  <->  ( U H y )  =  y ) )
23 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  U  ->  (
y H x )  =  ( y H U ) )
2423eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  U  ->  (
( y H x )  =  y  <->  ( y H U )  =  y ) )
2522, 24anbi12d 747 . . . . . . . 8  |-  ( x  =  U  ->  (
( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  ( ( U H y )  =  y  /\  ( y H U )  =  y ) ) )
2625ralbidv 2986 . . . . . . 7  |-  ( x  =  U  ->  ( A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) ) )
2726rspcev 3309 . . . . . 6  |-  ( ( U  e.  X  /\  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) )  ->  E. x  e.  X  A. y  e.  X  ( (
x H y )  =  y  /\  (
y H x )  =  y ) )
2816, 20, 27syl2anc 693 . . . . 5  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
293raleqdv 3144 . . . . . 6  |-  ( ph  ->  ( A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  A. y  e.  ran  G ( ( x H y )  =  y  /\  (
y H x )  =  y ) ) )
303, 29rexeqbidv 3153 . . . . 5  |-  ( ph  ->  ( E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  (
y H x )  =  y ) ) )
3128, 30mpbid 222 . . . 4  |-  ( ph  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
3215, 31jca 554 . . 3  |-  ( ph  ->  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )
331, 6, 32jca31 557 . 2  |-  ( ph  ->  ( ( G  e. 
AbelOp  /\  H : ( ran  G  X.  ran  G ) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
34 rnexg 7098 . . . . . 6  |-  ( G  e.  AbelOp  ->  ran  G  e.  _V )
351, 34syl 17 . . . . 5  |-  ( ph  ->  ran  G  e.  _V )
36 xpexg 6960 . . . . 5  |-  ( ( ran  G  e.  _V  /\ 
ran  G  e.  _V )  ->  ( ran  G  X.  ran  G )  e. 
_V )
3735, 35, 36syl2anc 693 . . . 4  |-  ( ph  ->  ( ran  G  X.  ran  G )  e.  _V )
38 fex 6490 . . . 4  |-  ( ( H : ( ran 
G  X.  ran  G
) --> ran  G  /\  ( ran  G  X.  ran  G )  e.  _V )  ->  H  e.  _V )
396, 37, 38syl2anc 693 . . 3  |-  ( ph  ->  H  e.  _V )
40 eqid 2622 . . . 4  |-  ran  G  =  ran  G
4140isrngo 33696 . . 3  |-  ( H  e.  _V  ->  ( <. G ,  H >.  e.  RingOps  <->  ( ( G  e.  AbelOp  /\  H : ( ran 
G  X.  ran  G
) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) ) )
4239, 41syl 17 . 2  |-  ( ph  ->  ( <. G ,  H >.  e.  RingOps 
<->  ( ( G  e. 
AbelOp  /\  H : ( ran  G  X.  ran  G ) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) ) )
4333, 42mpbird 247 1  |-  ( ph  -> 
<. G ,  H >.  e.  RingOps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   <.cop 4183    X. cxp 5112   ran crn 5115   -->wf 5884  (class class class)co 6650   AbelOpcablo 27398   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-rngo 33694
This theorem is referenced by:  iscringd  33797
  Copyright terms: Public domain W3C validator