| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issoi | Structured version Visualization version Unicode version | ||
| Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| issoi.1 |
|
| issoi.2 |
|
| issoi.3 |
|
| Ref | Expression |
|---|---|
| issoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issoi.1 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | issoi.2 |
. . . . 5
| |
| 4 | 3 | adantl 482 |
. . . 4
|
| 5 | 2, 4 | ispod 5043 |
. . 3
|
| 6 | issoi.3 |
. . . 4
| |
| 7 | 6 | adantl 482 |
. . 3
|
| 8 | 5, 7 | issod 5065 |
. 2
|
| 9 | 8 | trud 1493 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-tru 1486 df-ral 2917 df-po 5035 df-so 5036 |
| This theorem is referenced by: isso2i 5067 ltsopr 9854 sltsolem1 31826 |
| Copyright terms: Public domain | W3C validator |