MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isso2i Structured version   Visualization version   Unicode version

Theorem isso2i 5067
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
isso2i.1  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
isso2i.2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
Assertion
Ref Expression
isso2i  |-  R  Or  A
Distinct variable groups:    x, y,
z, R    x, A, y, z

Proof of Theorem isso2i
StepHypRef Expression
1 equid 1939 . . . . 5  |-  x  =  x
21orci 405 . . . 4  |-  ( x  =  x  \/  x R x )
3 eleq1 2689 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
43anbi2d 740 . . . . . 6  |-  ( y  =  x  ->  (
( x  e.  A  /\  y  e.  A
)  <->  ( x  e.  A  /\  x  e.  A ) ) )
5 equequ2 1953 . . . . . . . 8  |-  ( y  =  x  ->  (
x  =  y  <->  x  =  x ) )
6 breq1 4656 . . . . . . . 8  |-  ( y  =  x  ->  (
y R x  <->  x R x ) )
75, 6orbi12d 746 . . . . . . 7  |-  ( y  =  x  ->  (
( x  =  y  \/  y R x )  <->  ( x  =  x  \/  x R x ) ) )
8 breq2 4657 . . . . . . . 8  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
98notbid 308 . . . . . . 7  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
107, 9bibi12d 335 . . . . . 6  |-  ( y  =  x  ->  (
( ( x  =  y  \/  y R x )  <->  -.  x R y )  <->  ( (
x  =  x  \/  x R x )  <->  -.  x R x ) ) )
114, 10imbi12d 334 . . . . 5  |-  ( y  =  x  ->  (
( ( x  e.  A  /\  y  e.  A )  ->  (
( x  =  y  \/  y R x )  <->  -.  x R
y ) )  <->  ( (
x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) ) ) )
12 isso2i.1 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
1312con2bid 344 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x  =  y  \/  y R x )  <->  -.  x R y ) )
1411, 13chvarv 2263 . . . 4  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) )
152, 14mpbii 223 . . 3  |-  ( ( x  e.  A  /\  x  e.  A )  ->  -.  x R x )
1615anidms 677 . 2  |-  ( x  e.  A  ->  -.  x R x )
17 isso2i.2 . 2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
1813biimprd 238 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( -.  x R y  ->  ( x  =  y  \/  y R x ) ) )
1918orrd 393 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  ( x  =  y  \/  y R x ) ) )
20 3orass 1040 . . 3  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( x R y  \/  ( x  =  y  \/  y R x ) ) )
2119, 20sylibr 224 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  x  =  y  \/  y R x ) )
2216, 17, 21issoi 5066 1  |-  R  Or  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    e. wcel 1990   class class class wbr 4653    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  ltsonq  9791  ltsosr  9915  ltso  10118  xrltso  11974
  Copyright terms: Public domain W3C validator