| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isso2i | Structured version Visualization version Unicode version | ||
| Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| isso2i.1 |
|
| isso2i.2 |
|
| Ref | Expression |
|---|---|
| isso2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1939 |
. . . . 5
| |
| 2 | 1 | orci 405 |
. . . 4
|
| 3 | eleq1 2689 |
. . . . . . 7
| |
| 4 | 3 | anbi2d 740 |
. . . . . 6
|
| 5 | equequ2 1953 |
. . . . . . . 8
| |
| 6 | breq1 4656 |
. . . . . . . 8
| |
| 7 | 5, 6 | orbi12d 746 |
. . . . . . 7
|
| 8 | breq2 4657 |
. . . . . . . 8
| |
| 9 | 8 | notbid 308 |
. . . . . . 7
|
| 10 | 7, 9 | bibi12d 335 |
. . . . . 6
|
| 11 | 4, 10 | imbi12d 334 |
. . . . 5
|
| 12 | isso2i.1 |
. . . . . 6
| |
| 13 | 12 | con2bid 344 |
. . . . 5
|
| 14 | 11, 13 | chvarv 2263 |
. . . 4
|
| 15 | 2, 14 | mpbii 223 |
. . 3
|
| 16 | 15 | anidms 677 |
. 2
|
| 17 | isso2i.2 |
. 2
| |
| 18 | 13 | biimprd 238 |
. . . 4
|
| 19 | 18 | orrd 393 |
. . 3
|
| 20 | 3orass 1040 |
. . 3
| |
| 21 | 19, 20 | sylibr 224 |
. 2
|
| 22 | 16, 17, 21 | issoi 5066 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-po 5035 df-so 5036 |
| This theorem is referenced by: ltsonq 9791 ltsosr 9915 ltso 10118 xrltso 11974 |
| Copyright terms: Public domain | W3C validator |