| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issod | Structured version Visualization version Unicode version | ||
| Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| issod.1 |
|
| issod.2 |
|
| Ref | Expression |
|---|---|
| issod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issod.1 |
. 2
| |
| 2 | issod.2 |
. . 3
| |
| 3 | 2 | ralrimivva 2971 |
. 2
|
| 4 | df-so 5036 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ral 2917 df-so 5036 |
| This theorem is referenced by: issoi 5066 swoso 7775 wemapsolem 8455 legso 25494 fin2so 33396 |
| Copyright terms: Public domain | W3C validator |