MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   Unicode version

Theorem istdrg2 21981
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m  |-  M  =  (mulGrp `  R )
istdrg2.b  |-  B  =  ( Base `  R
)
istdrg2.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
istdrg2  |-  ( R  e. TopDRing 
<->  ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  ( B  \  {  .0.  } ) )  e.  TopGrp ) )

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3  |-  M  =  (mulGrp `  R )
2 eqid 2622 . . 3  |-  (Unit `  R )  =  (Unit `  R )
31, 2istdrg 21969 . 2  |-  ( R  e. TopDRing 
<->  ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  (Unit `  R ) )  e.  TopGrp ) )
4 istdrg2.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
5 istdrg2.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
64, 2, 5isdrng 18751 . . . . . . . 8  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  {  .0.  } ) ) )
76simprbi 480 . . . . . . 7  |-  ( R  e.  DivRing  ->  (Unit `  R
)  =  ( B 
\  {  .0.  }
) )
87adantl 482 . . . . . 6  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing )  ->  (Unit `  R )  =  ( B  \  {  .0.  } ) )
98oveq2d 6666 . . . . 5  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing )  ->  ( Ms  (Unit `  R ) )  =  ( Ms  ( B 
\  {  .0.  }
) ) )
109eleq1d 2686 . . . 4  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing )  ->  (
( Ms  (Unit `  R )
)  e.  TopGrp  <->  ( Ms  ( B  \  {  .0.  }
) )  e.  TopGrp ) )
1110pm5.32i 669 . . 3  |-  ( ( ( R  e.  TopRing  /\  R  e.  DivRing )  /\  ( Ms  (Unit `  R )
)  e.  TopGrp )  <->  ( ( R  e.  TopRing  /\  R  e.  DivRing )  /\  ( Ms  ( B  \  {  .0.  } ) )  e.  TopGrp ) )
12 df-3an 1039 . . 3  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  (Unit `  R ) )  e. 
TopGrp )  <->  ( ( R  e.  TopRing  /\  R  e.  DivRing )  /\  ( Ms  (Unit `  R ) )  e. 
TopGrp ) )
13 df-3an 1039 . . 3  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  ( B  \  {  .0.  }
) )  e.  TopGrp )  <-> 
( ( R  e.  TopRing 
/\  R  e.  DivRing )  /\  ( Ms  ( B 
\  {  .0.  }
) )  e.  TopGrp ) )
1411, 12, 133bitr4i 292 . 2  |-  ( ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  (Unit `  R ) )  e. 
TopGrp )  <->  ( R  e.  TopRing 
/\  R  e.  DivRing  /\  ( Ms  ( B  \  {  .0.  } ) )  e.  TopGrp ) )
153, 14bitri 264 1  |-  ( R  e. TopDRing 
<->  ( R  e.  TopRing  /\  R  e.  DivRing  /\  ( Ms  ( B  \  {  .0.  } ) )  e.  TopGrp ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   0gc0g 16100  mulGrpcmgp 18489   Ringcrg 18547  Unitcui 18639   DivRingcdr 18747   TopGrpctgp 21875   TopRingctrg 21959  TopDRingctdrg 21960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-drng 18749  df-tdrg 21964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator