MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgr Structured version   Visualization version   Unicode version

Theorem isuhgr 25955
Description: The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v  |-  V  =  (Vtx `  G )
isuhgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
isuhgr  |-  ( G  e.  U  ->  ( G  e. UHGraph  <->  E : dom  E --> ( ~P V  \  { (/)
} ) ) )

Proof of Theorem isuhgr
Dummy variables  g  h  v  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uhgr 25953 . . 3  |- UHGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> ( ~P v  \  { (/)
} ) }
21eleq2i 2693 . 2  |-  ( G  e. UHGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> ( ~P v  \  { (/)
} ) } )
3 fveq2 6191 . . . . 5  |-  ( h  =  G  ->  (iEdg `  h )  =  (iEdg `  G ) )
4 isuhgr.e . . . . 5  |-  E  =  (iEdg `  G )
53, 4syl6eqr 2674 . . . 4  |-  ( h  =  G  ->  (iEdg `  h )  =  E )
63dmeqd 5326 . . . . 5  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  (iEdg `  G
) )
74eqcomi 2631 . . . . . 6  |-  (iEdg `  G )  =  E
87dmeqi 5325 . . . . 5  |-  dom  (iEdg `  G )  =  dom  E
96, 8syl6eq 2672 . . . 4  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  E )
10 fveq2 6191 . . . . . . 7  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
11 isuhgr.v . . . . . . 7  |-  V  =  (Vtx `  G )
1210, 11syl6eqr 2674 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
1312pweqd 4163 . . . . 5  |-  ( h  =  G  ->  ~P (Vtx `  h )  =  ~P V )
1413difeq1d 3727 . . . 4  |-  ( h  =  G  ->  ( ~P (Vtx `  h )  \  { (/) } )  =  ( ~P V  \  { (/) } ) )
155, 9, 14feq123d 6034 . . 3  |-  ( h  =  G  ->  (
(iEdg `  h ) : dom  (iEdg `  h
) --> ( ~P (Vtx `  h )  \  { (/)
} )  <->  E : dom  E --> ( ~P V  \  { (/) } ) ) )
16 fvexd 6203 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  e.  _V )
17 fveq2 6191 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
18 fvexd 6203 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  e.  _V )
19 fveq2 6191 . . . . . . 7  |-  ( g  =  h  ->  (iEdg `  g )  =  (iEdg `  h ) )
2019adantr 481 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  =  (iEdg `  h ) )
21 simpr 477 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
e  =  (iEdg `  h ) )
2221dmeqd 5326 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  dom  e  =  dom  (iEdg `  h ) )
23 simpr 477 . . . . . . . . . 10  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  v  =  (Vtx `  h )
)
2423pweqd 4163 . . . . . . . . 9  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ~P v  =  ~P (Vtx `  h ) )
2524difeq1d 3727 . . . . . . . 8  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ( ~P v  \  { (/) } )  =  ( ~P (Vtx `  h )  \  { (/) } ) )
2625adantr 481 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
( ~P v  \  { (/) } )  =  ( ~P (Vtx `  h )  \  { (/)
} ) )
2721, 22, 26feq123d 6034 . . . . . 6  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
( e : dom  e
--> ( ~P v  \  { (/) } )  <->  (iEdg `  h
) : dom  (iEdg `  h ) --> ( ~P (Vtx `  h )  \  { (/) } ) ) )
2818, 20, 27sbcied2 3473 . . . . 5  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ( [. (iEdg `  g )  /  e ]. e : dom  e --> ( ~P v  \  { (/) } )  <->  (iEdg `  h ) : dom  (iEdg `  h
) --> ( ~P (Vtx `  h )  \  { (/)
} ) ) )
2916, 17, 28sbcied2 3473 . . . 4  |-  ( g  =  h  ->  ( [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> ( ~P v  \  { (/)
} )  <->  (iEdg `  h
) : dom  (iEdg `  h ) --> ( ~P (Vtx `  h )  \  { (/) } ) ) )
3029cbvabv 2747 . . 3  |-  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> ( ~P v  \  { (/)
} ) }  =  { h  |  (iEdg `  h ) : dom  (iEdg `  h ) --> ( ~P (Vtx `  h
)  \  { (/) } ) }
3115, 30elab2g 3353 . 2  |-  ( G  e.  U  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> ( ~P v  \  { (/) } ) }  <->  E : dom  E --> ( ~P V  \  { (/) } ) ) )
322, 31syl5bb 272 1  |-  ( G  e.  U  ->  ( G  e. UHGraph  <->  E : dom  E --> ( ~P V  \  { (/)
} ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   -->wf 5884   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by:  uhgrf  25957  uhgreq12g  25960  ushgruhgr  25964  isuhgrop  25965  uhgr0e  25966  uhgr0  25968  uhgrun  25969  uhgrstrrepe  25973  incistruhgr  25974  upgruhgr  25997  subuhgr  26178
  Copyright terms: Public domain W3C validator