| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
| 2 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
| 3 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
| 4 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
| 5 | | eqid 2622 |
. . . 4
Edg  Edg   |
| 6 | 1, 2, 3, 4, 5 | subgrprop2 26166 |
. . 3
 SubGraph  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     |
| 7 | | subgruhgrfun 26174 |
. . . . . . . . 9
  UHGraph
SubGraph 
iEdg    |
| 8 | 7 | ancoms 469 |
. . . . . . . 8
  SubGraph
UHGraph
iEdg    |
| 9 | 8 | adantl 482 |
. . . . . . 7
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  iEdg    |
| 10 | | funfn 5918 |
. . . . . . 7
 iEdg  iEdg  iEdg    |
| 11 | 9, 10 | sylib 208 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  iEdg  iEdg    |
| 12 | | simplrr 801 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UHGraph 
iEdg  
UHGraph  |
| 13 | | simplrl 800 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UHGraph 
iEdg   SubGraph   |
| 14 | | simpr 477 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UHGraph 
iEdg  
iEdg    |
| 15 | 1, 3, 12, 13, 14 | subgruhgredgd 26176 |
. . . . . . . 8
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UHGraph 
iEdg    iEdg       Vtx       |
| 16 | 15 | ralrimiva 2966 |
. . . . . . 7
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph   iEdg    iEdg       Vtx       |
| 17 | | fnfvrnss 6390 |
. . . . . . 7
  iEdg  iEdg 
 iEdg    iEdg       Vtx     
iEdg 
  Vtx       |
| 18 | 11, 16, 17 | syl2anc 693 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  iEdg    Vtx 
     |
| 19 | | df-f 5892 |
. . . . . 6
 iEdg    iEdg      Vtx 
    iEdg  iEdg  iEdg    Vtx 
      |
| 20 | 11, 18, 19 | sylanbrc 698 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  iEdg    iEdg      Vtx 
     |
| 21 | | subgrv 26162 |
. . . . . . . 8
 SubGraph 
   |
| 22 | 1, 3 | isuhgr 25955 |
. . . . . . . . 9
 
UHGraph iEdg    iEdg      Vtx        |
| 23 | 22 | adantr 481 |
. . . . . . . 8
 
  UHGraph
iEdg    iEdg      Vtx        |
| 24 | 21, 23 | syl 17 |
. . . . . . 7
 SubGraph  UHGraph iEdg    iEdg      Vtx 
      |
| 25 | 24 | adantr 481 |
. . . . . 6
  SubGraph
UHGraph  UHGraph iEdg    iEdg      Vtx 
      |
| 26 | 25 | adantl 482 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  
UHGraph iEdg    iEdg      Vtx        |
| 27 | 20, 26 | mpbird 247 |
. . . 4
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UHGraph  UHGraph  |
| 28 | 27 | ex 450 |
. . 3
  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     SubGraph
UHGraph UHGraph   |
| 29 | 6, 28 | syl 17 |
. 2
 SubGraph   SubGraph UHGraph UHGraph
  |
| 30 | 29 | anabsi8 861 |
1
  UHGraph
SubGraph  UHGraph  |