MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subuhgr Structured version   Visualization version   Unicode version

Theorem subuhgr 26178
Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subuhgr  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  S  e. UHGraph  )

Proof of Theorem subuhgr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) )
7 subgruhgrfun 26174 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
87ancoms 469 . . . . . . . 8  |-  ( ( S SubGraph  G  /\  G  e. UHGraph  )  ->  Fun  (iEdg `  S
) )
98adantl 482 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  Fun  (iEdg `  S ) )
10 funfn 5918 . . . . . . 7  |-  ( Fun  (iEdg `  S )  <->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
119, 10sylib 208 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
12 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  G  e. UHGraph  )
13 simplrl 800 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  S SubGraph  G )
14 simpr 477 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  x  e.  dom  (iEdg `  S ) )
151, 3, 12, 13, 14subgruhgredgd 26176 . . . . . . . 8  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  e.  ( ~P (Vtx `  S )  \  { (/)
} ) )
1615ralrimiva 2966 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  ( ~P (Vtx `  S )  \  { (/) } ) )
17 fnfvrnss 6390 . . . . . . 7  |-  ( ( (iEdg `  S )  Fn  dom  (iEdg `  S
)  /\  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  ( ~P (Vtx `  S )  \  { (/) } ) )  ->  ran  (iEdg `  S
)  C_  ( ~P (Vtx `  S )  \  { (/) } ) )
1811, 16, 17syl2anc 693 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  ran  (iEdg `  S )  C_  ( ~P (Vtx `  S
)  \  { (/) } ) )
19 df-f 5892 . . . . . 6  |-  ( (iEdg `  S ) : dom  (iEdg `  S ) --> ( ~P (Vtx `  S
)  \  { (/) } )  <-> 
( (iEdg `  S
)  Fn  dom  (iEdg `  S )  /\  ran  (iEdg `  S )  C_  ( ~P (Vtx `  S
)  \  { (/) } ) ) )
2011, 18, 19sylanbrc 698 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  (iEdg `  S ) : dom  (iEdg `  S ) --> ( ~P (Vtx `  S
)  \  { (/) } ) )
21 subgrv 26162 . . . . . . . 8  |-  ( S SubGraph  G  ->  ( S  e. 
_V  /\  G  e.  _V ) )
221, 3isuhgr 25955 . . . . . . . . 9  |-  ( S  e.  _V  ->  ( S  e. UHGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> ( ~P (Vtx `  S )  \  { (/)
} ) ) )
2322adantr 481 . . . . . . . 8  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  ( S  e. UHGraph  <->  (iEdg `  S
) : dom  (iEdg `  S ) --> ( ~P (Vtx `  S )  \  { (/) } ) ) )
2421, 23syl 17 . . . . . . 7  |-  ( S SubGraph  G  ->  ( S  e. UHGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) --> ( ~P (Vtx `  S
)  \  { (/) } ) ) )
2524adantr 481 . . . . . 6  |-  ( ( S SubGraph  G  /\  G  e. UHGraph  )  ->  ( S  e. UHGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) --> ( ~P (Vtx `  S
)  \  { (/) } ) ) )
2625adantl 482 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  ( S  e. UHGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> ( ~P (Vtx `  S )  \  { (/)
} ) ) )
2720, 26mpbird 247 . . . 4  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UHGraph  ) )  ->  S  e. UHGraph  )
2827ex 450 . . 3  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  (
( S SubGraph  G  /\  G  e. UHGraph  )  ->  S  e. UHGraph  ) )
296, 28syl 17 . 2  |-  ( S SubGraph  G  ->  ( ( S SubGraph  G  /\  G  e. UHGraph  )  ->  S  e. UHGraph  ) )
3029anabsi8 861 1  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  S  e. UHGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by:  uhgrspan  26184
  Copyright terms: Public domain W3C validator